AoPS Community

Math Prize For Girls Problems 2013

www.artofproblemsolving.com/community/c4242
by Ravi B

1 The figure below shows two equilateral triangles each with area 1.

The intersection of the two triangles is a regular hexagon. What is the area of the union of the two triangles?

2 When the binomial coefficient $\binom{125}{64}$ is written out in base 10 , how many zeros are at the rightmost end?

3 Let $S_{1}, S_{2}, \ldots, S_{125}$ be 125 sets of 5 numbers each, comprising 625 distinct numbers. Let m_{i} be the median of S_{i}. Let M be the median of $m_{1}, m_{2}, \ldots, m_{125}$. What is the greatest possible number of the 625 numbers that are less than M ?

4 The MathMatters competition consists of 10 players $P_{1}, P_{2}, \ldots, P_{10}$ competing in a ladder-style tournament. Player P_{10} plays a game with P_{9} : the loser is ranked 10th, while the winner plays P_{8}. The loser of that game is ranked 9th, while the winner plays P_{7}. They keep repeating this process until someone plays P_{1} : the loser of that final game is ranked 2nd, while the winner is ranked 1 st. How many different rankings of the players are possible?

5 Say that a 4-digit positive integer is mixed if it has 4 distinct digits, its leftmost digit is neither the biggest nor the smallest of the 4 digits, and its rightmost digit is not the smallest of the 4 digits. For example, 2013 is mixed. How many 4-digit positive integers are mixed?

6 Three distinct real numbers form (in some order) a 3-term arithmetic sequence, and also form (in possibly a different order) a 3-term geometric sequence. Compute the greatest possible value of the common ratio of this geometric sequence.

7 In the figure below, $\triangle A B C$ is an equilateral triangle.

Point A has coordinates $(1,1)$, point B is on the positive y-axis, and point C is on the positive x-axis. What is the area of $\triangle A B C$?
$8 \quad$ Let R be the set of points (x, y) such that x and y are positive, $x+y$ is at most 2013 , and

$$
\lceil x\rceil\lfloor y\rfloor=\lfloor x\rfloor\lceil y\rceil .
$$

Compute the area of set R. Recall that $\lfloor a\rfloor$ is the greatest integer that is less than or equal to a, and $\lceil a\rceil$ is the least integer that is greater than or equal to a.

9 Let A and B be distinct positive integers such that each has the same number of positive divisors that 2013 has. Compute the least possible value of $|A-B|$.

10 The following figure shows a walk of length 6:

This walk has three interesting properties:

- It starts at the origin, labelled O.
- Each step is 1 unit north, east, or west. There are no south steps.
- The walk never comes back to a point it has been to.

Let's call a walk with these three properties a northern walk. There are 3 northern walks of length 1 and 7 northern walks of length 2 . How many northern walks of length 6 are there?

11 Alice throws two standard dice, with A being the number on her first die and B being the number on her second die. She then draws the line $A x+B y=2013$. Boris also throws two standard dice, with C being the number on his first die and D being the number on his second die. He then draws the line $C x+D y=2014$. Compute the probability that these two lines are parallel.

12 The rectangular parallelepiped (box) P has some special properties. If one dimension of P were doubled and another dimension were halved, then the surface area of P would stay the same. If instead one dimension of P were tripled and another dimension were divided by 3 , then the surface area of P would still stay the same. If the middle (by length) dimension of P is 1 , compute the least possible volume of P.

13 Each of n boys and n girls chooses a random number from the set $\{1,2,3,4,5\}$, uniformly and independently. Let p_{n} be the probability that every boy chooses a different number than every girl. As n approaches infinity, what value does $\sqrt[n]{p_{n}}$ approach?

14 How many positive integers n satisfy the inequality

$$
\left\lceil\frac{n}{101}\right\rceil+1>\frac{n}{100} ?
$$

Recall that $\lceil a\rceil$ is the least integer that is greater than or equal to a.
15 Let $\triangle A B C$ be a triangle with $A B=7, B C=8$, and $A C=9$. Point D is on side $\overline{A C}$ such that $\angle C B D$ has measure 45°. What is the length of $\overline{B D}$?

16 If $-3 \leq x<\frac{3}{2}$ and $x \neq 1$, define $C(x)=\frac{x^{3}}{1-x}$. The real root of the cubic $2 x^{3}+3 x-7$ is of the form $p C^{-1}(q)$, where p and q are rational numbers. What is the ordered pair (p, q) ?

17 Let f be the function defined by $f(x)=-2 \sin (\pi x)$. How many values of x such that $-2 \leq x \leq 2$ satisfy the equation $f(f(f(x)))=f(x)$?

18 Ranu starts with one standard die on a table. At each step, she rolls all the dice on the table: if all of them show a 6 on top, then she places one more die on the table; otherwise, she does nothing more on this step. After 2013 such steps, let D be the number of dice on the table. What is the expected value (average value) of 6^{D} ?

19 If n is a positive integer, let $\phi(n)$ be the number of positive integers less than or equal to n that are relatively prime to n. Compute the value of the infinite sum

$$
\sum_{n=1}^{\infty} \frac{\phi(n) 2^{n}}{9^{n}-2^{n}}
$$

20 Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence of real numbers such that $a_{0}=\frac{4}{5}$ and

$$
a_{n}=2 a_{n-1}^{2}-1
$$

for every positive integer n. Let c be the smallest number such that for every positive integer n, the product of the first n terms satisfies the inequality

$$
a_{0} a_{1} \ldots a_{n-1} \leq \frac{c}{2^{n}}
$$

What is the value of $100 c$, rounded to the nearest integer?

