AoPS Community 1999 Finnish National High School Mathematics Competition

Finnish National High School Mathematics Competition 1999

www.artofproblemsolving.com/community/c4246
by socrates

1 Show that the equation $x^{3}+2 y^{2}+4 z=n$ has an integral solution (x, y, z) for all integers n.
2 Suppose that the positive numbers $a_{1}, a_{2}, . ., a_{n}$ form an arithmetic progression; hence $a_{k+1}-$ $a_{k}=d$, for $k=1,2, \ldots, n-1$.
Prove that

$$
\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\ldots+\frac{1}{a_{n-1} a_{n}}=\frac{n-1}{a_{1} a_{n}} .
$$

3 Determine how many primes are there in the sequence
101, 10101, 1010101....

4 Three unit circles have a common point O. The other points of (pairwise) intersection are A, B and C. Show that the points A, B and C are located on some unit circle.

5 An ordinary domino tile can be identifi ed as a pair (k, m) where numbers k and m can get values $0,1,2,3,4,5$ and 6 .
Pairs (k, m) and (m, k) determine the same tile. In particular, the pair (k, k) determines one tile. We say that two domino tiles match, if they have a common component.
Generalized n-domino tiles m and k can get values $0,1, \ldots, n$.
What is the probability that two randomly chosen n-domino tiles match?

