AoPS Community 2001 Finnish National High School Mathematics Competition

Finnish National High School Mathematics Competition 2001

www.artofproblemsolving.com/community/c4248
by socrates

1 In the right triangle $A B C, C F$ is the altitude based on the hypotenuse $A B$.
The circle centered at B and passing through F and the circle with centre A and the same radius intersect at a point of $C B$.
Determine the ratio $F B: B C$.
2 Equations of non-intersecting curves are $y=a x^{2}+b x+c$ and $y=d x^{2}+e x+f$ where $a d<0$. Prove that there is a line of the plane which does not meet either of the curves.

3 Numbers a, b and c are positive integers and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1$. Show that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{41}{42}
$$

4 A sequence of seven digits is randomly chosen in a weekly lottery. Every digit can be any of the digits $0,1,2,3,4,5,6,7,8,9$.
What is the probability of having at most fi ve diff erent digits in the sequence?
$5 \quad$ Determine $n \in \mathbb{N}$ such that $n^{2}+2$ divides $2+2001 n$.

