Art of Problem Solving

AoPS Community 2009 Finnish National High School Mathematics Competition

Finnish National High School Mathematics Competition 2009
www.artofproblemsolving.com/community/c4256
by Amir Hossein

1 In a plane, the point (x, y) has temperature $x^{2}+y^{2}-6 x+4 y$. Determine the coldest point of the plane and its temperature.

2 A polynomial P has integer coefficients and $P(3)=4$ and $P(4)=3$. For how many x we might have $P(x)=x$?

3 The circles \mathcal{Y}_{0} and \mathcal{Y}_{1} lies outside each other. Let O_{0} be the center of \mathcal{Y}_{0} and O_{1} be the center of \mathcal{Y}_{1}. From O_{0}, draw the rays which are tangents to \mathcal{Y}_{1} and similarty from O_{1}, draw the rays which are tangents to \mathcal{Y}_{0}. Let the intersection points of rays and circle \mathcal{Y}_{i} be A_{i} and B_{i}. Show that the line segments $A_{0} B_{0}$ and $A_{1} B_{1}$ have equal lengths.
$4 \quad$ We say that the set of step lengths $D \subset \mathbb{Z}_{+}=\{1,2, \ldots\}$ is excellent if it has the following property. If we split the set of integers into two subsets A and $\mathbb{Z} \backslash A$, at least other set contains element $a-d, a, a+d$ (i.e. $\{a-d, a, a+d\} \subset A$ or $\{a-d, a, a+d\} \in \mathbb{Z} \backslash A$ from some integer $a \in \mathbb{Z}, d \in D$.) For example the set of one element $\{1\}$ is not excellent as the set of integer can be split into even and odd numbers, and neither of these contains three consecutive integer. Show that the set $\{1,2,3,4\}$ is excellent but it has no proper subset which is excellent.

5 As in the picture below, the rectangle on the left hand side has been divided into four parts by line segments which are parallel to a side of the rectangle. The areas of the small rectangles are A, B, C and D. Similarly, the small rectangles on the right hand side have areas $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime}. It is known that $A \leq A^{\prime}, B \leq B^{\prime}, C \leq C^{\prime}$ but $D \leq B^{\prime}$.

A^{\prime}	B^{\prime}
D^{\prime}	C^{\prime}

Prove that the big rectangle on the left hand side has area smaller or equal to the area of the big rectangle on the right hand side, i.e. $A+B+C+D \leq A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}$.

