

AoPS Community 2009 Finnish National High School Mathematics Competition

Finnish National High School Mathematics Competition 2009

www.artofproblemsolving.com/community/c4256 by Amir Hossein

- 1 In a plane, the point (x, y) has temperature $x^2 + y^2 6x + 4y$. Determine the coldest point of the plane and its temperature.
- **2** A polynomial *P* has integer coefficients and P(3) = 4 and P(4) = 3. For how many *x* we might have P(x) = x?
- **3** The circles \mathcal{Y}_0 and \mathcal{Y}_1 lies outside each other. Let O_0 be the center of \mathcal{Y}_0 and O_1 be the center of \mathcal{Y}_1 . From O_0 , draw the rays which are tangents to \mathcal{Y}_1 and similarly from O_1 , draw the rays which are tangents to \mathcal{Y}_0 . Let the intersection points of rays and circle \mathcal{Y}_i be A_i and B_i . Show that the line segments A_0B_0 and A_1B_1 have equal lengths.
- 4 We say that the set of step lengths $D \subset \mathbb{Z}_+ = \{1, 2, ...\}$ is *excellent* if it has the following property: If we split the set of integers into two subsets A and $\mathbb{Z} \setminus A$, at least other set contains element a d, a, a + d (i.e. $\{a d, a, a + d\} \subset A$ or $\{a d, a, a + d\} \in \mathbb{Z} \setminus A$ from some integer $a \in \mathbb{Z}, d \in D$.) For example the set of one element $\{1\}$ is not excellent as the set of integer can be split into even and odd numbers, and neither of these contains three consecutive integer. Show that the set $\{1, 2, 3, 4\}$ is excellent but it has no proper subset which is excellent.
- **5** As in the picture below, the rectangle on the left hand side has been divided into four parts by line segments which are parallel to a side of the rectangle. The areas of the small rectangles are A, B, C and D. Similarly, the small rectangles on the right hand side have areas A', B', C' and D'. It is known that $A \le A', B \le B', C \le C'$ but $D \le B'$.

A	В			
D	С		A'	B'
			D'	C'

Prove that the big rectangle on the left hand side has area smaller or equal to the area of the big rectangle on the right hand side, i.e. $A + B + C + D \le A' + B' + C' + D'$.

