AoPS Community 2010 Finnish National High School Mathematics Competition

Finnish National High School Mathematics Competition 2010

www.artofproblemsolving.com/community/c4257
by socrates

1 Let $A B C$ be right angled triangle with sides s_{1}, s_{2}, s_{3} medians m_{1}, m_{2}, m_{3}. Prove that $m_{1}^{2}+m_{2}^{2}+$ $m_{3}^{2}=\frac{3}{4}\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}\right)$.

2 Determine the least $n \in \mathbb{N}$ such that $n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$ has at least 2010 positive factors.

3 Let $P(x)$ be a polynomial with integer coefficients and roots 1997 and 2010. Suppose further that $|P(2005)|<10$. Determine what integer values $P(2005)$ can get.

4 In a football season, even number n of teams plays a simple series, i.e. each team plays once against each other team. Show that ona can group the series into $n-1$ rounds such that in every round every team plays exactly one match.
$5 \quad$ Let S be a non-empty subset of a plane. We say that the point P can be seen from A if every point from the line segment $A P$ belongs to S. Further, the set S can be seen from A if every point of S can be seen from A. Suppose that S can be seen from A, B and C where $A B C$ is a triangle. Prove that S can also be seen from any other point of the triangle $A B C$.

