

AoPS Community 2012 Finnish National High School Mathematics Competition

Finnish National High School Mathematics Competition 2012

www.artofproblemsolving.com/community/c4259 by v_Enhance

- 1 A secant line splits a circle into two segments. Inside those segments, one draws two squares such that both squares has two corners on a secant line and two on the circumference. The ratio of the square's side lengths is 5 : 9. Compute the ratio of the secant line versus circle radius.
- **2** Let $x \neq 1, y \neq 1$ and $x \neq y$. Show that if

$$\frac{yz - x^2}{1 - x} = \frac{zx - y^2}{1 - y},$$

then

$$\frac{yz - x^2}{1 - x} = \frac{zx - y^2}{1 - y} = x + y + z.$$

3 Prove that for all integers $k \ge 2$, the number $k^{k-1} - 1$ is divisible by $(k-1)^2$.

4 Let
$$k, n \in \mathbb{N}, 0 < k < n$$
. Prove that

$$\sum_{j=1}^k \binom{n}{j} = \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{k} \le n^k.$$

5 The [i]Collatz's function[i] is a mapping $f : \mathbb{Z}_+ \to \mathbb{Z}_+$ satisfying

$$f(x) = \begin{cases} 3x+1, & \text{as } x \text{ is odd} \\ x/2, & \text{as } x \text{ is even.} \end{cases}$$

In addition, let us define the notation $f^1 = f$ and inductively $f^{k+1} = f \circ f^k$, or to say in another words, $f^k(x) = \underbrace{f(\dots,(f(x)\dots))}_{k \text{ times}}$

Prove that there is an $x \in \mathbb{Z}_+$ satisfying

 $f^{40}(x) > 2012x.$

Art of Problem Solving is an ACS WASC Accredited School.