## AoPS Community 2012 Finnish National High School Mathematics Competition

## Finnish National High School Mathematics Competition 2012

www.artofproblemsolving.com/community/c4259
by v_Enhance

1 A secant line splits a circle into two segments. Inside those segments, one draws two squares such that both squares has two corners on a secant line and two on the circumference. The ratio of the square's side lengths is $5: 9$. Compute the ratio of the secant line versus circle radius.

2 Let $x \neq 1, y \neq 1$ and $x \neq y$. Show that if

$$
\frac{y z-x^{2}}{1-x}=\frac{z x-y^{2}}{1-y}
$$

then

$$
\frac{y z-x^{2}}{1-x}=\frac{z x-y^{2}}{1-y}=x+y+z .
$$

3 Prove that for all integers $k \geq 2$, the number $k^{k-1}-1$ is divisible by $(k-1)^{2}$.
4 Let $k, n \in \mathbb{N}, 0<k<n$. Prove that

$$
\sum_{j=1}^{k}\binom{n}{j}=\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{k} \leq n^{k}
$$

5 The [i]Collatz's function[i] is a mapping $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$satisfying

$$
f(x)= \begin{cases}3 x+1, & \text { as } x \text { is odd } \\ x / 2, & \text { as } x \text { is even }\end{cases}
$$

In addition, let us define the notation $f^{1}=f$ and inductively $f^{k+1}=f \circ f^{k}$, or to say in another words, $f^{k}(x)=\underbrace{f(\ldots(f}_{k \text { times }}(x) \ldots)$.

Prove that there is an $x \in \mathbb{Z}_{+}$satisfying

$$
f^{40}(x)>2012 x
$$

