Art of Problem Solving

AoPS Community

Olympic Revenge 2009

www.artofproblemsolving.com/community/c4264
by rsa365, hvaz

1 Given a scalene triangle $A B C$ with circuncenter O and circumscribed circle Γ. Let D, E, F the midpoints of $B C, A C, A B$. Let $M=O E \cap A D, N=O F \cap A D$ and $P=C M \cap B N$. Let $X=A O \cap P E, Y=A P \cap O F$. Let r the tangent of Γ through A. Prove that $r, E F, X Y$ are concurrent.

2 Prove that $\int_{0}^{\frac{\pi}{2}} \operatorname{arctg}\left(1-\sin ^{2} x \cos ^{2} x\right) d x=\frac{\pi^{2}}{4}-\operatorname{arctg} \sqrt{\frac{\sqrt{2}-1}{2}}$
3 Let $A B C$ to be a triangle with incenter $I . \omega_{A}, \omega_{B}$ and ω_{C} are the incircles of the triangles $B I C$, $C I A$ and $A I B$, repectively. After all, T is the tangent point between ω_{A} and $B C$. Prove that the other internal common tangent to ω_{B} and ω_{C} passes through the point T.

4 Let $d_{i}(k)$ the number of divisors of k greater than i.
Let $f(n)=\sum_{i=1}^{\left\lfloor\frac{n^{2}}{2}\right\rfloor} d_{i}\left(n^{2}-i\right)-2 \sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} d_{i}(n-i)$.
Find all $n \in N$ such that $f(n)$ is a perfect square.
5 Thin and Fat eat a pizza of $2 n$ pieces. Each piece contains a distinct amount of olives between 1 and $2 n$. Thin eats the first piece, and the two players alternately eat a piece neighbor of an eaten piece. However, neither Thin nor Fat like olives, so they will choose pieces that minimizes the total amount of olives they eat. For each arrangement σ of the olives, let $s(\sigma)$ the minimal amount of olives that Thin can eat, considering that both play in the best way possible. Let $S(n)$ the maximum of $s(\sigma)$, considering all arrangements. a) Prove that $n^{2}-1+\left\lfloor\frac{n}{2}\right\rfloor \leq S(n) \leq n^{2}+\left\lfloor\frac{n}{2}\right\rfloor$ b) Prove that $S(n)=n^{2}-1+\frac{n}{2}$ for each even n .

6 Let $a, n \in \mathbb{Z}_{+}^{*}$. a is defined inductively in the base n-recursive. We first write a in the base n, e.g., as a sum of terms of the form $k_{t} n^{t}$, with $0 \leq k_{t}<n$. For each exponent t, we write t in the base n-recursive, until all the numbers in the representation are less than n. For instance,
$1309=3^{6}+2.3^{5}+1.3^{4}+1.3^{2}+1.3+1$
$=3^{2.3}+2.3^{3+2}+1.3^{3+1}+1.3^{2}+1$
Let $x_{1} \in \mathbb{Z}$ arbitrary. We define x_{n} recursively, as following: if $x_{n-1}>0$, we write x_{n-1} in the base n-recursive and we replace all the numbers n for $n+1$ (even the exponents!), so we obtain the successor of x_{n}. If $x_{n-1}=0$, then $x_{n}=0$.

Example:
$x_{1}=2^{2^{2}+2+1}+2^{2+1}+2+1$

$$
\begin{aligned}
& \Rightarrow x_{2}=3^{3^{3}+3+1}+3^{3+1}+3 \\
& \Rightarrow x_{3}=4^{4^{4}+4+1}+4^{4+1}+3 \\
& \Rightarrow x_{4}=5^{5^{5}+5+1}+5^{5+1}+2 \\
& \Rightarrow x_{5}=6^{6^{6}+6+1}+6^{6+1}+1 \\
& \Rightarrow x_{6}=7^{7^{7}+7+1}+7^{7+1} \\
& \Rightarrow x_{7}=8^{8^{8}+8+1}+7.8^{8}+7.8^{7}+7.8^{6}+\ldots+7
\end{aligned}
$$

Prove that $\exists N: x_{N}=0$.

