

AoPS Community

Olympic Revenge 2009

www.artofproblemsolving.com/community/c4264 by rsa365, hvaz

1 Given a scalene triangle ABC with circuncenter O and circumscribed circle Γ . Let D, E, F the midpoints of BC, AC, AB. Let $M = OE \cap AD$, $N = OF \cap AD$ and $P = CM \cap BN$. Let $X = AO \cap PE$, $Y = AP \cap OF$. Let r the tangent of Γ through A. Prove that r, EF, XY are concurrent.

2 Prove that
$$\int_0^{\frac{\pi}{2}} arctg(1 - \sin^2 x \cos^2 x) dx = \frac{\pi^2}{4} - \pi arctg \sqrt{\frac{\sqrt{2}-1}{2}}$$

- **3** Let *ABC* to be a triangle with incenter I. ω_A , ω_B and ω_C are the incircles of the triangles *BIC*, *CIA* and *AIB*, repectively. After all, *T* is the tangent point between ω_A and *BC*. Prove that the other internal common tangent to ω_B and ω_C passes through the point *T*.
- 4 Let $d_i(k)$ the number of divisors of k greater than i. Let $f(n) = \sum_{i=1}^{\lfloor \frac{n^2}{2} \rfloor} d_i(n^2 - i) - 2 \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} d_i(n - i)$. Find all $n \in N$ such that f(n) is a perfect square.
- **5** Thin and Fat eat a pizza of 2n pieces. Each piece contains a distinct amount of olives between 1 and 2n. Thin eats the first piece, and the two players alternately eat a piece neighbor of an eaten piece. However, neither Thin nor Fat like olives, so they will choose pieces that minimizes the total amount of olives they eat. For each arrangement σ of the olives, let $s(\sigma)$ the minimal amount of olives that Thin can eat, considering that both play in the best way possible. Let S(n) the maximum of $s(\sigma)$, considering all arrangements. a) Prove that $n^2 1 + \lfloor \frac{n}{2} \rfloor \leq S(n) \leq n^2 + \lfloor \frac{n}{2} \rfloor$ b) Prove that $S(n) = n^2 1 + \frac{n}{2}$ for each even n.
- **6** Let $a, n \in \mathbb{Z}_{+}^{*}$. *a* is defined inductively in the base *n*-recursive. We first write *a* in the base *n*, e.g., as a sum of terms of the form $k_t n^t$, with $0 \le k_t < n$. For each exponent *t*, we write *t* in the base *n*-recursive, until all the numbers in the representation are less than *n*. For instance,

$$1309 = 3^6 + 2.3^5 + 1.3^4 + 1.3^2 + 1.3 + 1$$

 $= 3^{2.3} + 2.3^{3+2} + 1.3^{3+1} + 1.3^2 + 1$

Let $x_1 \in \mathbb{Z}$ arbitrary. We define x_n recursively, as following: if $x_{n-1} > 0$, we write x_{n-1} in the base *n*-recursive and we replace all the numbers n for n+1 (even the exponents!), so we obtain the successor of x_n . If $x_{n-1} = 0$, then $x_n = 0$.

Example:

 $x_1 = 2^{2^2 + 2 + 1} + 2^{2 + 1} + 2 + 1$

AoPS Community

$$\Rightarrow x_2 = 3^{3^3+3+1} + 3^{3+1} + 3$$

$$\Rightarrow x_3 = 4^{4^4+4+1} + 4^{4+1} + 3$$

$$\Rightarrow x_4 = 5^{5^5+5+1} + 5^{5+1} + 2$$

$$\Rightarrow x_5 = 6^{6^6+6+1} + 6^{6+1} + 1$$

$$\Rightarrow x_6 = 7^{7^7+7+1} + 7^{7+1}$$

$$\Rightarrow x_7 = 8^{8^8+8+1} + 7.8^8 + 7.8^7 + 7.8^6 + \dots + 7$$

.
.
.
Prove that $\exists N : x_N = 0$.

Act of Problem Solving is an ACS WASC Accredited School.