AoPS Community

Olympic Revenge 2010

www.artofproblemsolving.com/community/c4265
by hvaz

1 Prove that the number of ordered triples (x, y, z) such that $(x+y+z)^{2} \equiv a x y z \bmod p$, where $\operatorname{gcd}(a, p)=1$ and p is prime is $p^{2}+1$.

2 Joaquim, Jos and Joo participate of the worship of triangle $A B C$. It is well known that $A B C$ is a random triangle, nothing special. According to the dogmas of the worship, when they form a triangle which is similar to $A B C$, they will get immortal. Nevertheless, there is a condition: each person must represent a vertice of the triangle. In this case, Joaquim will represent vertice A, Jos vertice B and Joo will represent vertice C. Thus, they must form a triangle which is similar to $A B C$, in this order.

Suppose all three points are in the Euclidean Plane. Once they are very excited to become immortal, they act in the following way: in each instant t, Joaquim, for example, will move with constant velocity v to the point in the same semi-plan determined by the line which connects the other two points, and which would create a triangle similar to $A B C$ in the desired order. The other participants act in the same way.
If the velocity of all of them is same, and if they initially have a finite, but sufficiently large life, determine if they can get immortal.

Observation: Initially, Joaquim, Jos and Joo do not represent three collinear points in the plane
3 Prove that there exists a set S of lines in the three dimensional space satisfying the following conditions:
${ }^{i}$) For each point P in the space, there exist a unique line of S containing P.
ii) There are no two lines of S which are parallel.

4 Let a_{n} and b_{n} to be two sequences defined as below:
i) $a_{1}=1$
ii) $a_{n}+b_{n}=6 n-1$
iii) a_{n+1} is the least positive integer different of $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$.

Determine a_{2009}.
5 Secco and Ramon are drunk in the real line over the integer points a and b, respectively. Our real line is a little bit special, though: the interval $(-\infty, 0)$ is covered by a sea of lava. Being aware of this fact, and also because they are drunk, they decided to play the following game: initially
they choose an integer number $k>1$ using a fair dice as large as desired, and therefore they start the game. In the first round, each player writes the point h for which it wants to go.

After that, they throw a coin: if the result is heads, they go to the desired points; otherwise, they go to the points $2 g-h$, where g is the point where each of the players were in the precedent round (that is, in the first round $g=a$ for Secco and $g=b$ for Ramon). They repeat this procedure in the other rounds, and the game finishes when some of the player is over a point exactly k times bigger than the other (if both of the player end up in the point 0 , the game finishes as well).

Determine, in values of k, the initial values a and b such that Secco and Ramon has a winning strategy to finish the game alive.
Observation: If any of the players fall in the lave, he dies and both of them lose the game
6 Let $A B C$ to be a triangle and Γ its circumcircle. Also, let D, F, G and E, in this order, on the arc $B C$ which does not contain A satisfying $\angle B A D=\angle C A E$ and $\angle B A F=\angle C A G$. Let $D^{‘}, F^{\iota}, G^{6}$ and E^{\prime} to be the intersections of $A D, A F, A G$ and $A E$ with $B C$, respectively. Moreover, X is the intersection of $D F^{\iota}$ with $E G^{\iota}, Y$ is the intersection of $D^{‘} F$ with $E^{\iota} G, Z$ is the intersection of $D^{\triangleleft} G$ with $E^{\iota} F$ and W is the intersection of $E F^{\star}$ with $D G^{\iota}$.

Prove that X, Y and A are collinear, such as W, Z and A. Moreover, prove that $\angle B A X=\angle C A Z$.

