AoPS Community

Olympic Revenge 2011

www.artofproblemsolving.com/community/c4266
by hvaz

1 Let $p, q, r, s, t \in \mathbb{R}_{+}^{*}$ satisfying:
i) $p^{2}+p q+q^{2}=s^{2}$
ii) $q^{2}+q r+r^{2}=t^{2}$
iii) $r^{2}+r p+p^{2}=s^{2}-s t+t^{2}$

Prove that

$$
\frac{s^{2}-s t+t^{2}}{s^{2} t^{2}}=\frac{r^{2}}{q^{2} t^{2}}+\frac{p^{2}}{q^{2} s^{2}}-\frac{p r}{q^{2} t s}
$$

2 Let p be a fixed prime. Determine all the integers m, as function of p, such that there exist $a_{1}, a_{2}, \ldots, a_{p} \in \mathbb{Z}$ satisfying

$$
m \mid a_{1}^{p}+a_{2}^{p}+\cdots+a_{p}^{p}-(p+1) .
$$

3 Let E to be an infinite set of congruent ellipses in the plane, and r a fixed line. It is known that each line parallel to r intersects at least one ellipse belonging to E. Prove that there exist infinitely many triples of ellipses belonging to E, such that there exists a line that intersect the triple of ellipses.

4 Let $A B C D$ to be a quadrilateral inscribed in a circle Γ. Let r and s to be the tangents to Γ through B and C, respectively, M the intersection between the lines r and $A D$ and N the intersection between the lines s and $A D$. After all, let E to be the intersection between the lines $B N$ and $C M, F$ the intersection between the lines $A E$ and $B C$ and L the midpoint of $B C$. Prove that the circuncircle of the triangle $D L F$ is tangent to Γ.
$5 \quad$ Let $n \in \mathbb{N}$ and $z \in \mathbb{C}^{*}$. Prove that
$\left|n \mathrm{e}^{z}-\sum_{j=1}^{n}\left(1+\frac{z}{j^{2}}\right)^{j^{2}}\right|<\frac{1}{3} \mathrm{e}^{|z|}\left(\frac{\pi|z|}{2}\right)^{2}$.

