AoPS Community

Kosovo Team Selection Test 2017

www.artofproblemsolving.com/community/c426760
by Duarti

1 Find all positive integers (a, b), such that $\frac{a^{2}}{2 a b^{2}-b^{3}+1}$ is also a positive integer.
2 Prove that there doesn't exist any function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that: $f(f(n-1)=f(n+1)-f(n)$, for every natural $n \geq 2$

3 If a and b are positive real numbers with sum 3 , and x, y, z positive real numbers with product 1, prove that: $(a x+b)(a y+b)(a z+b) \geq 27$
$4 \quad$ For every $n \in \mathbb{N}_{0}$, prove that $\sum_{k=0}^{\left[\frac{n}{2}\right]} 2^{n-2 k}\binom{n}{2 k}=\frac{3^{n}+1}{2}$
5 Given triangle $A B C$. Let P, Q, R, be the tangency points of inscribed circle of $\triangle A B C$ on sides $A B, B C, A C$ respectively. We take the reflection of these points with respect to midpoints of the sides they lie on, and denote them as P^{\prime}, Q^{\prime} and R^{\prime}. Prove that $A P^{\prime}, B Q^{\prime}$, and $C R^{\prime}$ are concurrent.

