AoPS Community

Olympic Revenge 2014

www.artofproblemsolving.com/community/c4269
by rsa365

1 Let $A B C$ an acute triangle and Γ its circumcircle. The bisector of $B A C$ intersects Γ at $M \neq A$. A line r parallel to $B C$ intersects $A C$ at X and $A B$ at Y. Also, $M X$ and $M Y$ intersect Γ again at S and T, respectively.

If $X Y$ and $S T$ intersect at P, prove that $P A$ is tangent to Γ.
2 a) Let n a positive integer. Prove that $\operatorname{gcd}(n,\lfloor n \sqrt{2}\rfloor)<\sqrt[4]{8} \sqrt{n}$.
b) Prove that there are infinitely many positive integers n such that $\operatorname{gcd}(n,\lfloor n \sqrt{2}\rfloor)>\sqrt[4]{7.99} \sqrt{n}$.

3 Let n a positive integer. In a $2 n \times 2 n$ board, $1 \times n$ and $n \times 1$ pieces are arranged without overlap. Call an arrangement maximal if it is impossible to put a new piece in the board without overlapping the previous ones.
Find the least k such that there is a maximal arrangement that uses k pieces.
$4 \quad$ Let $a>1$ be a positive integer and $f \in \mathbb{Z}[x]$ with positive leading coefficient. Let S be the set of integers n such that

$$
n \mid a^{f(n)}-1 .
$$

Prove that S has density 0 ; that is, prove that $\lim _{n \rightarrow \infty} \frac{|S \cap\{1, \ldots, n\}|}{n}=0$.

