AoPS Community

Uzbekistan National Olympiad 2005

www.artofproblemsolving.com/community/c4271
by shohvanilu, Pirkuliyev Rovsen

1 Given $\mathrm{a}, \mathrm{b} \mathrm{c}$ are lenth of a triangle (If ABC is a triangle then $\mathrm{AC}=\mathrm{b}, \mathrm{BC}=\mathbf{a}, \mathrm{AC}=\mathbf{b}$) and $a+b+c=2$. Prove that $1+a b c<a b+b c+c a \leq \frac{28}{27}+a b c$

2 Solve in integer the equation $\frac{1}{2}(x+y)(y+z)(x+z)+(x+y+z)^{3}=1-x y z$
3 Find the last five digits of $1^{100}+2^{100}+3^{100}+\ldots+999999^{100}$
4 Let $A B C D$ is a cyclic. K, L, M, N are midpoints of segments $A B, B C C D$ and $D A . H_{1}, H_{2}, H_{3}, H_{4}$ are orthocenters of $A K N K B L L C M$ and $M N D$. Prove that $H_{1} H_{2} H_{3} H_{4}$ is a paralelogram.

