

AoPS Community

2005 Uzbekistan National Olympiad

Uzbekistan National Olympiad 2005

www.artofproblemsolving.com/community/c4271 by shohvanilu, Pirkuliyev Rovsen

1	Given a,b c are lenth of a triangle (If ABC is a triangle then AC=b, BC=a, AC=b) and $a+b+c=2$. Prove that $1 + abc < ab + bc + ca \le \frac{28}{27} + abc$
2	Solve in integer the equation $\frac{1}{2}(x+y)(y+z)(x+z) + (x+y+z)^3 = 1 - xyz$
3	Find the last five digits of $1^{100} + 2^{100} + 3^{100} + + 999999^{100}$
4	Let $ABCD$ is a cyclic. K, L, M, N are midpoints of segments $AB, BCCD$ and $DA. H_1, H_2, H_3, H_4$ are orthocenters of $AKN \ KBL \ LCM$ and MND . Prove that $H_1H_2H_3H_4$ is a paralelogram.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.