Art of Problem Solving

AoPS Community

Uzbekistan National Olympiad 2011

www.artofproblemsolving.com/community/c4272
by Uzbekistan, shohvanilu

Day 1

1 Let a,b,c Postive real numbers such that $a+b+c \geq 6$. Find the minimum value $A=\sum_{c y c} a^{2}+\sum_{c y c} \frac{a}{b^{2}+c+1}$

2 Prove that $\forall n \in \mathbb{N}, \exists a, b, c \in \bigcup_{k \in \mathbb{N}}\left(k^{2}, k^{2}+k+3 \sqrt{3}\right)$ such that $n=\frac{a b}{c}$.
3 Given an acute triangle $A B C$ with altituties AD and BE . O circumcinter of $A B C$. If o lies on the segment $D E$ then find the value of $\sin A \sin B \cos C$
$4 \quad A$ graph G arises from G_{1} and G_{2} by pasting them along S if G has induced subgraphs G_{1}, G_{2} with $G=G_{1} \cup G_{2}$ and S is such that $S=G_{1} \cap G_{2}$. A is graph is called chordal if it can be constructed recursively by pasting along complete subgraphs, starting from complete subgraphs. For a graph $G(V, E)$ define its Hilbert polynomial $H_{G}(x)$ to be $H_{G}(x)=1+V x+E x^{2}+$ $c\left(K_{3}\right) x^{3}+c\left(K_{4}\right) x^{4}+\ldots+c\left(K_{w(G)}\right) x^{w(G)}$,
where $c\left(K_{i}\right)$ is the number of i-cliques in G and $w(G)$ is the clique number of G. Prove that $H_{G}(-1)=0$ if and only if G is chordal or a tree.

Day 2

$1 \quad$ Find the minimum value of $|x-y|+\sqrt{(x+2)^{2}+(y-4)^{4}}$
2 Let triangle ABC with $A B=c A C=b B C=a R$ circumradius, p half peremetr of $A B C$.
If $\frac{a \cos A+b \cos B+c \cos C}{a \sin A+b \sin B+\operatorname{csin} C}=\frac{p}{9 R}$ then find all value of $\cos A$.
3 In acute triangle $A B C A D$ is bisector. O is circumcenter, H is orthocenter. If $A D=A C$ and $A C \perp O H$. Find all of the value of $\angle A B C$ and $\angle A C B$.

4 Does existes a function $f: N->N$ and for all positeve integer $\mathbf{n} f(f(n)+2011)=f(n)+$ $f(f(n))$

