AoPS Community

Uzbekistan National Olympiad 2012

www.artofproblemsolving.com/community/c4273
by shohvanilu

1 Given a digits $0,1,2, \ldots, 9$. Find the number of numbers of 6 digits which cantain 7 or 7 's digit and they is permulated(For example 137456 and 314756 is one numbers).

2 For any positive integers n and m satisfying the equation $n^{3}+(n+1)^{3}+(n+2)^{3}=m^{3}$, prove that $4 \mid n+1$.

3 The inscribed circle ω of the non-isosceles acute-angled triangle $A B C$ touches the side $B C$ at the point D. Suppose that I and O are the centres of inscribed circle and circumcircle of triangle $A B C$ respectively. The circumcircle of triangle $A D I$ intersects $A O$ at the points A and E. Prove that $A E$ is equal to the radius r of ω.

4 Given a, b and c positive real numbers with $a b+b c+c a=1$. Then prove that $\frac{a^{3}}{1+9 b^{2} a c}+\frac{b^{3}}{1+9 c^{2} a b}+$ $\frac{c^{3}}{1+9 a^{2} b c} \geq \frac{(a+b+c)^{3}}{18}$
$5 \quad$ Given points A, B, C and D lie a circle. $A C \cap B D=K . I_{1}, I_{2}, I_{3}$ and I_{4} incenters of $A B K, B C K, C D K, D K A$ $M_{1}, M_{2}, M_{3}, M_{4}$ midpoints of arcs $A B, B C, C A, D A$. Then prove that $M_{1} I_{1}, M_{2} I_{2}, M_{3} I_{3}, M_{4} I_{4}$ are concurrent.

