AoPS Community

Uzbekistan National Olympiad 2013

www.artofproblemsolving.com/community/c4274
by mathuz

1 Let real numbers a, b such that $a \geq b \geq 0$. Prove that

$$
\sqrt{a^{2}+b^{2}}+\sqrt[3]{a^{3}+b^{3}}+\sqrt[4]{a^{4}+b^{4}} \leq 3 a+b
$$

2 Let x and y are real numbers such that $x^{2} y^{2}+2 y x^{2}+1=0$. If $S=\frac{2}{x^{2}}+1+\frac{1}{x}+y\left(y+2+\frac{1}{x}\right)$, find
(a) $\max S$ and
(b) $\min S$.

3 Find all functions $f: Q \rightarrow Q$ such that

$$
f(x+y)+f(y+z)+f(z+t)+f(t+x)+f(x+z)+f(y+t) \geq 6 f(x-3 y+5 z+7 t)
$$

for all $x, y, z, t \in Q$.
4 Let circles Γ and ω are circumcircle and incircle of the triangle $A B C$, the incircle touches sides $B C, C A, A B$ at the points A_{1}, B_{1}, C_{1}. Let A_{2} and B_{2} lies the lines $A_{1} I$ and $B_{1} I\left(A_{1}\right.$ and A_{2} lies different sides from I, B_{1} and B_{2} lies different sides from I) such that $I A_{2}=I B_{2}=R$. Prove that:
(a) $A A_{2}=B B_{2}=I O$;
(b) The lines $A A_{2}$ and $B B_{2}$ intersect on the circle Γ;

5 Let $S A B C$ is pyramid, such that $S A \leq 4, S B \geq 7, S C \geq 9, A B=5, B C \leq 6$ and $A C \leq 8$. Find max value capacity(volume) of the pyramid $S A B C$.

