

AoPS Community

Uzbekistan National Olympiad 2013

www.artofproblemsolving.com/community/c4274 by mathuz

1 Let real numbers a, b such that $a \ge b \ge 0$. Prove that

$$\sqrt{a^2 + b^2} + \sqrt[3]{a^3 + b^3} + \sqrt[4]{a^4 + b^4} \le 3a + b.$$

2 Let x and y are real numbers such that $x^2y^2 + 2yx^2 + 1 = 0$. If $S = \frac{2}{x^2} + 1 + \frac{1}{x} + y(y + 2 + \frac{1}{x})$, find (a)max*S* and (b) min*S*.

3 Find all functions $f: Q \to Q$ such that

$$f(x+y) + f(y+z) + f(z+t) + f(t+x) + f(x+z) + f(y+t) \ge 6f(x-3y+5z+7t)$$

for all $x, y, z, t \in Q$.

- 4 Let circles Γ and ω are circumcircle and incircle of the triangle ABC, the incircle touches sides BC, CA, AB at the points A₁, B₁, C₁. Let A₂ and B₂ lies the lines A₁I and B₁I (A₁ and A₂ lies different sides from I, B₁ and B₂ lies different sides from I) such that IA₂ = IB₂ = R. Prove that :
 (a) AA₂ = BB₂ = IO;
 - (b) The lines AA_2 and BB_2 intersect on the circle Γ ;
- **5** Let *SABC* is pyramid, such that $SA \le 4$, $SB \ge 7$, $SC \ge 9$, AB = 5, $BC \le 6$ and $AC \le 8$. Find max value capacity(volume) of the pyramid *SABC*.

Art of Problem Solving is an ACS WASC Accredited School.