

AoPS Community

Uzbekistan National Olympiad 2014

www.artofproblemsolving.com/community/c4275 by ehsan2004, mathuz

1 Find all integers a, b, c with 1 < a < b < c such that

$$(a-1)(b-1)(c-1)$$

is a divisor of abc - 1.

2 Find all functions $f : R \to R$ such that

$$f(x^3) + f(y^3) = (x+y)(f(x^2) + f(y^2) - f(xy))$$

for all $x, y \in R$.

3 For all $x, y, z \in \mathbb{R} \setminus \{1\}$, such that xyz = 1, prove that

$$\frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1$$

- **4** A circle passes through the points A, C of triangle ABC intersects with the sides AB, BC at points D, E respectively. Let $\frac{BD}{CE} = \frac{3}{2}$, BE = 4, AD = 5 and $AC = 2\sqrt{7}$. Find the angle $\angle BDC$.
- **5** Let $PA_1A_2...A_{12}$ be the regular pyramid, $A_1A_2...A_{12}$ is regular polygon, S is area of the triangle PA_1A_5 and angle between of the planes $A_1A_2...A_{12}$ and PA_1A_5 is equal to α . Find the volume of the pyramid.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.