AoPS Community

www.artofproblemsolving.com/community/c427960
by Tintarn, Snakes, rmtf1111

- Day 1

1 Let the sequence $\left(a_{n}\right)_{n \geqslant 1}$ be defined as:

$$
a_{n}=\sqrt{A_{n+2}^{1} \sqrt[3]{A_{n+3}^{2} \sqrt[4]{A_{n+4}^{3} \sqrt[5]{A_{n+5}^{4}}}},}
$$

where A_{m}^{k} are defined by

$$
A_{m}^{k}=\binom{m}{k} \cdot k!.
$$

Prove that

$$
a_{n}<\frac{119}{120} \cdot n+\frac{7}{3} .
$$

2 Let

$$
f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

be a polynomial with real coefficients which satisfies

$$
a_{n} \geq a_{n-1} \geq \cdots \geq a_{1} \geq a_{0}>0
$$

Prove that for every complex root z of this polynomial, we have $|z| \leq 1$.
3 Let ω be the circumcircle of the acute nonisosceles triangle $\triangle A B C$. Point P lies on the altitude from A. Let E and F be the feet of the altitudes from P to $C A, B A$ respectively. Circumcircle of triangle $\triangle A E F$ intersects the circle ω in G, different from A. Prove that the lines $G P, B E$ and $C F$ are concurrent.

4 Determine all natural numbers n of the form $n=[a, b]+[b, c]+[c, a]$ where a, b, c are positive integers and $[u, v]$ is the least common multiple of the integers u and v.

- Day 2

$5 \quad$ Find all continuous functions $f: R \rightarrow R$ such, that $f(x y)=f\left(\frac{x^{2}+y^{2}}{2}\right)+(x-y)^{2}$ for any real numbers x and y

AoPS Community

6 Let a, b, c be positive real numbers that satisfy $a+b+c=a b c$. Prove that

$$
\sqrt{\left(1+a^{2}\right)\left(1+b^{2}\right)}+\sqrt{\left(1+b^{2}\right)\left(1+c^{2}\right)}+\sqrt{\left(1+a^{2}\right)\left(1+c^{2}\right)}-\sqrt{\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right)} \geq 4
$$

7 Let $A B C$ be an acute triangle, and H its orthocenter. The distance from H to rays $B C, C A$, and $A B$ is denoted by d_{a}, d_{b}, and d_{c}, respectively. Let R be the radius of circumcenter of $\triangle A B C$ and r be the radius of incenter of $\triangle A B C$. Prove the following inequality:

$$
d_{a}+d_{b}+d_{c} \leq \frac{3 R^{2}}{4 r}
$$

8 At a summer school there are 7 courses. Each participant was a student in at least one course, and each course was taken by exactly 40 students. It is known that for each 2 courses there were at most 9 students who took them both. Prove that at least 120 students participated at this summer school.

- Day 3

9 Let

$$
P(X)=a_{0} X^{n}+a_{1} X^{n-1}+\cdots+a_{n}
$$

be a polynomial with real coefficients such that $a_{0}>0$ and

$$
a_{n} \geq a_{i} \geq 0,
$$

for all $i=0,1,2, \ldots, n-1$. Prove that if

$$
P^{2}(X)=b_{0} X^{2 n}+b_{1} X^{2 n-1}+\cdots+b_{n-1} X^{n+1}+\cdots+b_{2 n},
$$

then $P^{2}(1) \geq 2 b_{n-1}$.
10 Let p be an odd prime. Prove that the number

$$
\left\lfloor(\sqrt{5}+2)^{p}-2^{p+1}\right\rfloor
$$

is divisible by $20 p$.
11 Find all ordered pairs of nonnegative integers (x, y) such that

$$
x^{4}-x^{2} y^{2}+y^{4}+2 x^{3} y-2 x y^{3}=1 .
$$

12 There are 75 points in the plane, no three collinear. Prove that the number of acute triangles is no more than 70% from the total number of triangles with vertices in these points.

