AoPS Community

Second Round Olympiad 2003

www.artofproblemsolving.com/community/c4280
by tau172

1 From point P outside a circle draw two tangents to the circle touching at A and B. Draw a secant line intersecting the circle at points C and D, with C between P and D. Choose point Q on the chord $C D$ such that $\angle D A Q=\angle P B C$. Prove that $\angle D B Q=\angle P A C$.

2 Let the three sides of a triangle be ℓ, m, n, respectively, satisfying $\ell>m>n$ and $\left\{\frac{3^{\ell}}{10^{4}}\right\}=$ $\left\{\frac{3^{m}}{10^{4}}\right\}=\left\{\frac{3^{n}}{10^{4}}\right\}$, where $\{x\}=x-\lfloor x\rfloor$ and $\lfloor x\rfloor$ denotes the integral part of the number x. Find the minimum perimeter of such a triangle.

3 Let a space figure consist of n vertices and l lines connecting these vertices, with $n=q^{2}+q+1$, $l \geq q^{2}(q+1)^{2}+1, q \geq 2, q \in \mathbb{N}$. Suppose the figure satisfies the following conditions: every four vertices are non-coplaner, every vertex is connected by at least one line, and there is a vertex connected by at least $p+2$ lines. Prove that there exists a space quadrilateral in the figure, i.e. a quadrilateral with four vertices A, B, C, D and four lines $A B, B C, C D, D A$ in the figure.

