AoPS Community

Second Round Olympiad 2004

www.artofproblemsolving.com/community/c4281
by tau172

1 In an acute triangle $A B C$, point H is the intersection point of altitude $C E$ to $A B$ and altitude $B D$ to $A C$. A circle with $D E$ as its diameter intersects $A B$ and $A C$ at F and G, respectively. $F G$ and $A H$ intersect at point K. If $B C=25, B D=20$, and $B E=7$, find the length of $A K$.

2 In a planar rectangular coordinate system, a sequence of points A_{n} on the positive half of the y -axis and a sequence of points B_{n} on the curve $y=\sqrt{2 x}(x \geq 0)$ satisfy the condition $\left|O A_{n}\right|=\left|O B_{n}\right|=\frac{1}{n}$. The x-intercept of line $A_{n} B_{n}$ is a_{n}, and the x -coordinate of point B_{n} is b_{n}, $n \in \mathbb{N}$. Prove that
(1) $a_{n}>a_{n+1}>4, n \in \mathbb{N}$;
(2) There is $n_{0} \in \mathbb{N}$, such that for any $n>n_{0}, \frac{b_{2}}{b_{1}}+\frac{b_{3}}{b_{2}}+\ldots+\frac{b_{n}}{b_{n-1}}+\frac{b_{n+1}}{b_{n}}<n-2004$.
$3 \quad$ For integer $n \geq 4$, find the minimal integer $f(n)$, such that for any positive integer m, in any subset with $f(n)$ elements of the set $m, m+1, \ldots, m+n+1$ there are at least 3 relatively prime elements.

