

AoPS Community

Second Round Olympiad 2004

www.artofproblemsolving.com/community/c4281 by tau172

- 1 In an acute triangle ABC, point H is the intersection point of altitude CE to AB and altitude BD to AC. A circle with DE as its diameter intersects AB and AC at F and G, respectively. FG and AH intersect at point K. If BC = 25, BD = 20, and BE = 7, find the length of AK.
- 2 In a planar rectangular coordinate system, a sequence of points A_n on the positive half of the y-axis and a sequence of points B_n on the curve $y = \sqrt{2x}$ ($x \ge 0$) satisfy the condition $|OA_n| = |OB_n| = \frac{1}{n}$. The x-intercept of line A_nB_n is a_n , and the x-coordinate of point B_n is b_n , $n \in \mathbb{N}$. Prove that (1) $a_n > a_{n+1} > 4$, $n \in \mathbb{N}$; (2) There is $n_0 \in \mathbb{N}$, such that for any $n > n_0$, $\frac{b_2}{b_1} + \frac{b_3}{b_2} + \ldots + \frac{b_n}{b_{n-1}} + \frac{b_{n+1}}{b_n} < n - 2004$.
- **3** For integer $n \ge 4$, find the minimal integer f(n), such that for any positive integer m, in any subset with f(n) elements of the set $m, m+1, \ldots, m+n+1$ there are at least 3 relatively prime elements.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.