AoPS Community

Second Round Olympiad 2005

www.artofproblemsolving.com/community/c4282
by taul 72

1 In $\triangle A B C, A B>A C, l$ is a tangent line of the circumscribed circle of $\triangle A B C$, passing through A. The circle, centered at A with radius $A C$, intersects $A B$ at D, and line l at E, F. Prove that lines $D E, D F$ pass through the incenter and an excenter of $\triangle A B C$ respectively.

2 Assume that positive numbers a, b, c, x, y, z satisfy $c y+b z=a, a z+c x=b$, and $b x+a y=c$. Find the minimum value of the function

$$
f(x, y, z)=\frac{x^{2}}{x+1}+\frac{y^{2}}{y+1}+\frac{z^{2}}{z+1} .
$$

3 For each positive integer, define a function

$$
f(n)=\left\{\begin{array}{ll}
0, & \text { if } \mathrm{n} \text { is the square of an integer } \\
\left\lfloor\frac{1}{\{\sqrt{n}\}}\right\rfloor, & \text { if } \mathrm{n} \text { is not the square of an integer }
\end{array} .\right.
$$

Find the value of $\sum_{k=1}^{200} f(k)$.

