Art of Problem Solving

AoPS Community

Second Round Olympiad 2006

www.artofproblemsolving.com/community/c4283
by littletush, tau 172

- \quad Test 2

1 An ellipse with foci B_{0}, B_{1} intersects $A B_{i}$ at $C_{i}(i=0,1)$. Let P_{0} be a point on ray $A B_{0}$. Q_{0} is a point on ray $C_{1} B_{0}$ such that $B_{0} P_{0}=B_{0} Q_{0} ; P_{1}$ is on ray $B_{1} A$ such that $C_{1} Q_{0}=C_{1} P_{1} ; Q_{1}$ is on ray $B_{1} C_{0}$ such that $B_{1} P_{1}=B_{1} Q_{1} ; P_{2}$ is on ray $A B_{0}$ such that $C_{0} Q_{1}=C_{0} Q_{2}$. Prove that $P_{0}=P_{2}$ and that the four points $P_{0}, Q_{0}, Q_{1}, P_{1}$ are concyclic.

2 Let x, y be real numbers. Define a sequence $\left\{a_{n}\right\}$ through the recursive formula

$$
a_{0}=x, a_{1}=y, a_{n+1}=\frac{a_{n} a_{n-1}+1}{a_{n}+a_{n-1}},
$$

Find a_{n}.
3 Solve the system of equations in real numbers:

$$
\left\{\begin{array}{l}
x-y+z-w=2 \\
x^{2}-y^{2}+z^{2}-w^{2}=6 \\
x^{3}-y^{3}+z^{3}-w^{3}=20 \\
x^{4}-y^{4}+z^{4}-w^{4}=66
\end{array}\right.
$$

- \quad Test 1

1 Let $\triangle A B C$ be a given triangle. If $|B A-t B C| \geq|A C|$ for any $t \in \mathbb{R}$, then $\triangle A B C$ is (A) an acute triangle

2 Suppose $\log _{x}\left(2 x^{2}+x-1\right)>\log _{x} 2-1$. Then the range of x is (A) $\frac{1}{2}<x<1 \quad$ (B) $x>\frac{1}{2}$ and $x \neq 1$ $x<1$

3 Suppose $A=x|5 x-a \leq 0, B=x| 6 x-b>0, a, b \in \mathbb{N}$, and $A \cap B \cap \mathbb{N}=2,3,4$. The number of
such pairs (a, b) is (\mathbf{A}) 20
(B) 25
(C) 30
(D) 42

4 Given a right triangular prism $A_{1} B_{1} C_{1}-A B C$ with $\angle B A C=\frac{\pi}{2}$ and $A B=A C=A A_{1}$, let G, E be the midpoints of $A_{1} B_{1}, C C_{1}$ respectively, and D, F be variable points lying on segments $A C, A B$ (not including endpoints) respectively. If $G D \perp E F$, the range of the length of $D F$ is
(A) $\left[\frac{1}{\sqrt{5}}, 1\right)$
(B) $\left[\frac{1}{5}, 2\right)$
(C) $[1, \sqrt{2})$
(D) $\left[\frac{1}{\sqrt{2}}, \sqrt{2}\right)$

AoPS Community

2006 China Second Round Olympiad

5 Suppose $f(x)=x^{3}+\log _{2}\left(x+\sqrt{x^{2}+1}\right)$. For any $a, b \in \mathbb{R}$, to satisfy $f(a)+f(b) \geq 0$, the condition $a+b \geq 0$ is
(A) necessary and sufficient
(B) not necessary but sufficient
(C) necessary but not sufficient
(D) neither necessary nor sufficient

6 Let S be the set of all those 2007 place decimal integers $\overline{2 s_{1} a_{2} a_{3} \ldots a_{2006}}$ which contain odd number of digit 9 in each sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{2006}$. The cardinal number of S is
(A) $\frac{1}{2}\left(10^{2006}+8^{2006}\right)$
(B) $\frac{1}{2}\left(10^{2006}-8^{2006}\right)$
(C) $10^{2006}+8^{2006}$
(D) $10^{2006}-8^{2006}$

7 Let $f(x)=\sin ^{4} x-\sin x \cos x+\cos ^{4} x$. Find the range of $f(x)$.
8 Let complex number $z=(a+\cos \theta)+(2 a-\sin \theta) i$. Find the range of real number a if $|z| \geq 2$ for any $\theta \in \mathbb{R}$.

9 Suppose points F_{1}, F_{2} are the left and right foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ respectively, and point P is on line $l:, x-\sqrt{3} y+8+2 \sqrt{3}=0$. Find the value of ratio $\frac{\left|P F_{1}\right|}{\left|P F_{2}\right|}$ when $\angle F_{1} P F_{2}$ reaches its maximum value.

10 Suppose four solid iron balls are placed in a cylinder with the radius of 1 cm , such that every two of the four balls are tangent to each other, and the two balls in the lower layer are tangent to the cylinder base. Now put water into the cylinder. Find, in cm^{2}, the volume of water needed to submerge all the balls.

11 Find the number of real solutions to the equation $\left(x^{2006}+1\right)\left(1+x^{2}+x^{4}+\ldots+x^{2004}\right)=2006 x^{2005}$

12 Suppose there are 8 white balls and 2 red balls in a packet. Each time one ball is drawn and replaced by a white one. Find the probability that the last red ball is drawn in the fourth draw.

13 Given an integer $n \geq 2$, define $M_{0}\left(x_{0}, y_{0}\right)$ to be an intersection point of the parabola $y^{2}=n x-1$ and the line $y=x$. Prove that for any positive integer m, there exists an integer $k \geq 2$ such that $\left(x_{0}^{m}, y_{0}^{m}\right)$ is an intersection point of $y^{2}=m x-1$ and the line $y=x$.

14 Let 2006 be expressed as the sum of five positive integers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and $S=\sum_{1 \leq i<j \leq 5} x_{i} x_{j}$. (A) What value of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ maximizes S ? (A) Find, with proof, the value of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ which minimizes of S if $\left|x_{i}-x_{j}\right| \leq 2$ for any $1 \leq i, j \leq 5$.

15 Suppose $f(x)=x^{2}+a$. Define $f^{1}(x)=f(x), f^{n}(x)=f\left(f^{n-1}(x)\right), n=2,3, \cdots$, and let $M=$ $\left\{a \in \mathbb{R}\left|\left|f^{n}(0)\right| \leq 2\right.\right.$, for any $\left.n \in \mathbb{N}\right\}$. Prove that $M=\left[-2, \frac{1}{4}\right]$.

