

AoPS Community

2015 China Team Selection Test

China Team Selection Test 2015

www.artofproblemsolving.com/community/c42845

by TheMaskedMagician, 61plus, sqing, TelvCohl, dibyo_99, fattypiggy123

TST 1	
Day 1	
1	The circle Γ through A of triangle ABC meets sides AB , AC at E , F respectively, and circum- circle of ABC at P . Prove: Reflection of P across EF is on BC if and only if Γ passes through O (the circumcentre of ABC).
2	Let a_1, a_2, a_3, \cdots be distinct positive integers, and $0 < c < \frac{3}{2}$. Prove that : There exist infinitely many positive integers k , such that $[a_k, a_{k+1}] > ck$.
3	Fix positive integers k, n . A candy vending machine has many different colours of candy, where there are $2n$ candies of each colour. A couple of kids each buys from the vending machine 2 candies of different colours. Given that for any $k + 1$ kids there are two kids who have at least one colour of candy in common, find the maximum number of kids.
Day 2	
4	Prove that : For each integer $n \ge 3$, there exists the positive integers $a_1 < a_2 < \cdots < a_n$, such that for $i = 1, 2, \cdots, n-2$, With a_i, a_{i+1}, a_{i+2} may be formed as a triangle side length, and the area of the triangle is a positive integer.
5	Flx positive integer n . Prove: For any positive integers a, b, c not exceeding $3n^2 + 4n$, there exist integers x, y, z with absolute value not exceeding $2n$ and not all 0, such that $ax + by + cz = 0$
6	There are some players in a Ping Pong tournament, where every 2 players play with each other at most once. Given:
	(1) Each player wins at least a players, and loses to at least b players. ($a,b\geq 1$)
	(2) For any two players A, B , there exist some players $P_1,, P_k$ ($k \ge 2$) (where $P_1 = A, P_k = B$), such that P_i wins P_{i+1} ($i = 1, 2, k - 1$).
	Prove that there exist $a + b + 1$ distinct players $Q_1,, Q_{a+b+1}$, such that Q_i wins Q_{i+1} ($i = 1,, a + b$)
TST 2	

AoPS Community

2015 China Team Selection Test

Day 1

- **1** For a positive integer *n*, and a non empty subset *A* of $\{1, 2, ..., 2n\}$, call *A* good if the set $\{u \pm v | u, v \in A\}$ does not contain the set $\{1, 2, ..., n\}$. Find the smallest real number *c*, such that for any positive integer *n*, and any good subset *A* of $\{1, 2, ..., 2n\}$, $|A| \le cn$.
- **2** Let $a_1, a_2, a_3, \dots, a_n$ be positive real numbers. For the integers $n \ge 2$, prove that

$$\left(\frac{\sum_{j=1}^{n} \left(\prod_{k=1}^{j} a_{k}\right)^{\frac{1}{j}}}{\sum_{j=1}^{n} a_{j}}\right)^{\frac{1}{n}} + \frac{\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}}}{\sum_{j=1}^{n} \left(\prod_{k=1}^{j} a_{k}\right)^{\frac{1}{j}}} \le \frac{n+1}{n}$$

3 Let $\triangle ABC$ be an acute triangle with circumcenter O and centroid G. Let D be the midpoint of BC and $E \in \odot(BC)$ be a point inside $\triangle ABC$ such that $AE \perp BC$. Let $F = EG \cap OD$ and K, L be the point lie on BC such that $FK \parallel OB, FL \parallel OC$. Let $M \in AB$ be a point such that $MK \perp BC$ and $N \in AC$ be a point such that $NL \perp BC$. Let ω be a circle tangent to OB, OC at B, C, respectively.

Prove that $\odot(AMN)$ is tangent to ω

Day 2 4 Let n be a positive integer, let $f_1(x), \ldots, f_n(x)$ be n bounded real functions, and let a_1, \ldots, a_n be *n* distinct reals. Show that there exists a real number x such that $\sum_{i=1}^{n} f_i(x) - \sum_{i=1}^{n} f_i(x-a_i) < 1$. 5 Set S to be a subset of size 68 of $\{1, 2, ..., 2015\}$. Prove that there exist 3 pairwise disjoint, non-empty subsets A, B, C such that |A| = |B| = |C| and $\sum_{a \in A} a = \sum_{b \in B} b = \sum_{c \in C} c$ Prove that there exist infinitely many integers n such that $n^2 + 1$ is squarefree. 6 TST 3 Day 1 1 $\triangle ABC$ is isosceles with AB = AC > BC. Let D be a point in its interior such that DA =DB + DC. Suppose that the perpendicular bisector of AB meets the external angle bisector of $\angle ADB$ at P, and let Q be the intersection of the perpendicular bisector of AC and the external

2 Let X be a non-empty and finite set, $A_1, ..., A_k$ k subsets of X, satisying:

angle bisector of $\angle ADC$. Prove that B, C, P, Q are concyclic.

(1) $|A_i| \le 3, i = 1, 2, ..., k$

(2) Any element of X is an element of at least 4 sets among $A_1, ..., A_k$.

Show that one can select $\left[\frac{3k}{7}\right]$ sets from $A_1, ..., A_k$ such that their union is X.

3 Let a, b be two integers such that their gcd has at least two prime factors. Let $S = \{x \mid x \in \mathbb{N}, x \equiv a \pmod{b}\}$ and call $y \in S$ irreducible if it cannot be expressed as product of two or more elements of S (not necessarily distinct). Show there exists t such that any element of S can be expressed as product of at most t irreducible elements.

Day 2			

1 Let x_1, x_2, \dots, x_n $(n \ge 2)$ be a non-decreasing monotonous sequence of positive numbers such that $x_1, \frac{x_2}{2}, \dots, \frac{x_n}{n}$ is a non-increasing monotonous sequence .Prove that

$$\frac{\sum_{i=1}^{n} x_i}{n \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}} \leq \frac{n+1}{2 \sqrt[n]{n!}}$$

2 Let *G* be the complete graph on 2015 vertices. Each edge of *G* is dyed red, blue or white. For a subset *V* of vertices of *G*, and a pair of vertices (u, v), define

 $L(u, v) = \{u, v\} \cup \{w | w \in V \ni \triangle uvw \text{ has exactly 2 red sides}\}$

Prove that, for any choice of V, there exist at least 120 distinct values of L(u, v).

3 For all natural numbers *n*, define $f(n) = \tau(n!) - \tau((n-1)!)$, where $\tau(a)$ denotes the number of positive divisors of *a*. Prove that there exist infinitely many composite *n*, such that for all naturals m < n, we have f(m) < f(n).

Act of Problem Solving is an ACS WASC Accredited School.