Art of Problem Solving

AoPS Community

China Team Selection Test 2015
www.artofproblemsolving.com/community/c42845
by TheMaskedMagician, 61 plus, sqing, TelvCohl, dibyo_99, fattypiggy123

TST 1

Day 1

1 The circle Γ through A of triangle $A B C$ meets sides $A B, A C$ at E, F respectively, and circumcircle of $A B C$ at P. Prove: Reflection of P across $E F$ is on $B C$ if and only if Γ passes through O (the circumcentre of $A B C$).

2 Let $a_{1}, a_{2}, a_{3}, \cdots$ be distinct positive integers, and $0<c<\frac{3}{2}$. Prove that : There exist infinitely many positive integers k, such that $\left[a_{k}, a_{k+1}\right]>c k$.

3 Fix positive integers k, n. A candy vending machine has many different colours of candy, where there are $2 n$ candies of each colour. A couple of kids each buys from the vending machine 2 candies of different colours. Given that for any $k+1$ kids there are two kids who have at least one colour of candy in common, find the maximum number of kids.

Day 2

4 Prove that : For each integer $n \geq 3$, there exists the positive integers $a_{1}<a_{2}<\cdots<a_{n}$, such that for $i=1,2, \cdots, n-2$, With a_{i}, a_{i+1}, a_{i+2} may be formed as a triangle side length, and the area of the triangle is a positive integer.

5 Flx positive integer n. Prove: For any positive integers a, b, c not exceeding $3 n^{2}+4 n$, there exist integers x, y, z with absolute value not exceeding $2 n$ and not all 0 , such that $a x+b y+c z=0$

6 There are some players in a Ping Pong tournament, where every 2 players play with each other at most once. Given:
(1) Each player wins at least a players, and loses to at least b players. ($a, b \geq 1$)
(2) For any two players A, B, there exist some players $P_{1}, \ldots, P_{k}(k \geq 2)$ (where $P_{1}=A, P_{k}=B$), such that P_{i} wins $P_{i+1}(i=1,2 \ldots, k-1)$.

Prove that there exist $a+b+1$ distinct players $Q_{1}, \ldots Q_{a+b+1}$, such that Q_{i} wins $Q_{i+1}(i=$ $1, \ldots, a+b$)

Day 1

1 For a positive integer n, and a non empty subset A of $\{1,2, \ldots, 2 n\}$, call A good if the set $\{u \pm$ $v \mid u, v \in A\}$ does not contain the set $\{1,2, \ldots, n\}$. Find the smallest real number c, such that for any positive integer n, and any good subset A of $\{1,2, \ldots, 2 n\},|A| \leq c n$.

2 Let $a_{1}, a_{2}, a_{3}, \cdots, a_{n}$ be positive real numbers. For the integers $n \geq 2$, prove that

$$
\left(\frac{\sum_{j=1}^{n}\left(\prod_{k=1}^{j} a_{k}\right)^{\frac{1}{j}}}{\sum_{j=1}^{n} a_{j}}\right)^{\frac{1}{n}}+\frac{\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}}}{\sum_{j=1}^{n}\left(\prod_{k=1}^{j} a_{k}\right)^{\frac{1}{j}}} \leq \frac{n+1}{n}
$$

3 Let $\triangle A B C$ be an acute triangle with circumcenter O and centroid G.
Let D be the midpoint of $B C$ and $E \in \odot(B C)$ be a point inside $\triangle A B C$ such that $A E \perp B C$.
Let $F=E G \cap O D$ and K, L be the point lie on $B C$ such that $F K\|O B, F L\| O C$.
Let $M \in A B$ be a point such that $M K \perp B C$ and $N \in A C$ be a point such that $N L \perp B C$.
Let ω be a circle tangent to $O B, O C$ at B, C, respectively .
Prove that $\odot(A M N)$ is tangent to ω

Day 2

4 Let n be a positive integer, let $f_{1}(x), \ldots, f_{n}(x)$ be n bounded real functions, and let a_{1}, \ldots, a_{n} be n distinct reals.
Show that there exists a real number x such that $\sum_{i=1}^{n} f_{i}(x)-\sum_{i=1}^{n} f_{i}\left(x-a_{i}\right)<1$.
5 Set S to be a subset of size 68 of $\{1,2, \ldots, 2015\}$. Prove that there exist 3 pairwise disjoint, non-empty subsets A, B, C such that $|A|=|B|=|C|$ and $\sum_{a \in A} a=\sum_{b \in B} b=\sum_{c \in C} c$

6 Prove that there exist infinitely many integers n such that $n^{2}+1$ is squarefree.

TST 3

Day 1

$1 \triangle A B C$ is isosceles with $A B=A C>B C$. Let D be a point in its interior such that $D A=$ $D B+D C$. Suppose that the perpendicular bisector of $A B$ meets the external angle bisector of $\angle A D B$ at P, and let Q be the intersection of the perpendicular bisector of $A C$ and the external angle bisector of $\angle A D C$. Prove that B, C, P, Q are concyclic.

2 Let X be a non-empty and finite set, $A_{1}, \ldots, A_{k} k$ subsets of X, satisying:
(1) $\left|A_{i}\right| \leq 3, i=1,2, \ldots, k$
(2) Any element of X is an element of at least 4 sets among A_{1}, \ldots, A_{k}.

Show that one can select $\left[\frac{3 k}{7}\right]$ sets from A_{1}, \ldots, A_{k} such that their union is X.
3 Let a, b be two integers such that their gcd has at least two prime factors. Let $S=\{x \mid x \in$ $\mathbb{N}, x \equiv a(\bmod b)\}$ and call $y \in S$ irreducible if it cannot be expressed as product of two or more elements of S (not necessarily distinct). Show there exists t such that any element of S can be expressed as product of at most t irreducible elements.

Day 2

1 Let $x_{1}, x_{2}, \cdots, x_{n}(n \geq 2)$ be a non-decreasing monotonous sequence of positive numbers such that $x_{1}, \frac{x_{2}}{2}, \cdots, \frac{x_{n}}{n}$ is a non-increasing monotonous sequence. Prove that

$$
\frac{\sum_{i=1}^{n} x_{i}}{n\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}} \leq \frac{n+1}{2 \sqrt[n]{n!}}
$$

2 Let G be the complete graph on 2015 vertices. Each edge of G is dyed red, blue or white. For a subset V of vertices of G, and a pair of vertices (u, v), define

$$
L(u, v)=\{u, v\} \cup\{w \mid w \in V \ni \triangle u v w \text { has exactly } 2 \text { red sides }\}
$$

Prove that, for any choice of V, there exist at least 120 distinct values of $L(u, v)$.
3 For all natural numbers n, define $f(n)=\tau(n!)-\tau((n-1)$!), where $\tau(a)$ denotes the number of positive divisors of a. Prove that there exist infinitely many composite n, such that for all naturals $m<n$, we have $f(m)<f(n)$.

