

AoPS Community

Second Round Olympiad 2008

www.artofproblemsolving.com/community/c4285 by littletush

- Given a convex quadrilateral with ∠B+∠D < 180.Let P be an arbitrary point on the plane, define f(P) = PA * BC + PD * CA + PC * AB.
 (1)Prove that P, A, B, C are concyclic when f(P) attains its minimum.
 (2)Suppose that E is a point on the minor arc AB of the circumcircle O of ABC, such that AE = ^{√3}/₂AB, BC = (√3 - 1)EC, ∠ECA = 2∠ECB.Knowing that DA, DC are tangent to circle O, AC = √2, find the minimum of f(P).
- Let f(x) be a periodic function with periods T and 1(0 < T < 1). Prove that:
 (1) If T is rational, then there exists a prime p such that ¹/_p is also a period of f;
 (2) If T is irrational, then there exists a strictly decreasing infinite sequence a_n, with 1 > a_n > 0 for all positive integer n, such that all a_n are periods of f.
- **3** For all $k = 1, 2, ..., 2008, a_k > 0$. Prove that iff $\sum_{k=1}^{2008} a_k > 1$, there exists a function $f : N \to R$ satisfying (1)0 = f(0) < f(1) < f(2) < ...;(2)f(n) has a finite limit when n approaches infinity; (3) $f(n) - f(n-1) = \sum_{k=1}^{2008} a_k f(n+k) - \sum_{k=0}^{2007} a_{k+1} f(n+k)$, for all n = 1, 2, 3, ...

🟟 AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱