AoPS Community

Second Round Olympiad 2008

www.artofproblemsolving.com/community/c4285
by littletush

1 Given a convex quadrilateral with $\angle B+\angle D<180$. Let P be an arbitrary point on the plane,define $f(P)=P A * B C+P D * C A+P C * A B$.
(1)Prove that P, A, B, C are concyclic when $f(P)$ attains its minimum.
(2)Suppose that E is a point on the minor arc $A B$ of the circumcircle O of $A B C$, such that $A E=$ $\frac{\sqrt{3}}{2} A B, B C=(\sqrt{3}-1) E C, \angle E C A=2 \angle E C B$. Knowing that $D A, D C$ are tangent to circle $O, A C=\sqrt{2}$, find the minimum of $f(P)$.

2 Let $f(x)$ be a periodic function with periods T and $1(0<T<1)$. Prove that:
(1)If T is rational,then there exists a prime p such that $\frac{1}{p}$ is also a period of f;
(2)If T is irrational,then there exists a strictly decreasing infinite sequence a_{n}, with $1>a_{n}>0$ for all positive integer n,such that all a_{n} are periods of f.

3 For all $k=1,2, \ldots, 2008, a_{k}>0$. Prove that iff $\sum_{k=1}^{2008} a_{k}>1$, there exists a function $f: N \rightarrow R$ satisfying
(1) $0=f(0)<f(1)<f(2)<\ldots$;
(2) $f(n)$ has a finite limit when n approaches infinity;
(3) $f(n)-f(n-1)=\sum_{k=1}^{2008} a_{k} f(n+k)-\sum_{k=0}^{2007} a_{k+1} f(n+k)$,for all $n=1,2,3, \ldots$.

