AoPS Community

Second Round Olympiad 2009

www.artofproblemsolving.com/community/c4286
by littletush

1 Let ω be the circumcircle of acute triangle $A B C$ where $\angle A<\angle B$ and M, N be the midpoints of minor arcs $B C, A C$ of ω respectively. The line $P C$ is parallel to $M N$, intersecting ω at P (different from C). Let I be the incentre of $A B C$ and let $P I$ intersect ω again at the point T.

1) Prove that $M P \cdot M T=N P \cdot N T$;
2) Let Q be an arbitrary point on minor arc $A B$ and I, J be the incentres of triangles $A Q C, B C Q$. Prove that Q, I, J, T are concyclic.

2 Let n be a positive integer. Prove that

$$
-1<\sum_{k=1}^{n} \frac{k}{k^{2}+1}-\ln n \leq \frac{1}{2}
$$

3 Let k, l be two given integers. Prove that there exist infinite many integers $m \geq k$ such that $\operatorname{gcd}\left(\binom{m}{k}, l\right)=1$.

4 Let $P=\left[a_{i j}\right]_{3 \times 9}$ be a 3×9 matrix where $a_{i j} \geq 0$ for all i, j. The following conditions are given: -Every row consists of distinct numbers;
$-\sum_{i=1}^{3} x_{i j}=1$ for $1 \leq j \leq 6$;
$-x_{17}=x_{28}=x_{39}=0$;
$-x_{i j}>1$ for all $1 \leq i \leq 3$ and $7 \leq j \leq 9$ such that $j-i \neq 6$.
-The first three columns of P satisfy the following property (R): for an arbitrary column $\left[x_{1 k}, x_{2 k}, x_{3 k}\right]^{T}$, $1 \leq k \leq 9$, there exists an $i \in\{1,2,3\}$ such that $x_{i k} \leq u_{i}=\min \left(x_{i 1}, x_{i 2}, x_{i 3}\right)$.
Prove that:
a) the elements u_{1}, u_{2}, u_{3} come from three different columns;
b) if a column $\left[x_{1 l}, x_{2 l}, x_{3 l}\right]^{T}$ of P, where $l \geq 4$, satisfies the condition that after replacing the third column of P by it, the first three columns of the newly obtained matrix P^{\prime} still have property (R), then this column uniquely exists.

