

AoPS Community

2011 China Second Round Olympiad

Second Round Olympiad 2011

www.artofproblemsolving.com/community/c4288 by littletush, Cheercheerup, Issl

art

- **1** Let P, Q be the midpoints of diagonals AC, BD in cyclic quadrilateral ABCD. If $\angle BPA = \angle DPA$, prove that $\angle AQB = \angle CQB$.
- **2** For any integer $n \ge 4$, prove that there exists a *n*-degree polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$

satisfying the two following properties:

(1) a_i is a positive integer for any $i = 0, 1, \dots, n-1$, and

(2) For any two positive integers m and k ($k \ge 2$) there exist distinct positive integers $r_1, r_2, ..., r_k$, such that $f(m) \neq \prod_{i=1}^k f(r_i)$.

- **3** Given $n \ge 4$ real numbers $a_n > ... > a_1 > 0$. For r > 0, let $f_n(r)$ be the number of triples (i, j, k) with $1 \le i < j < k \le n$ such that $\frac{a_j a_i}{a_k a_j} = r$. Prove that $f_n(r) < \frac{n^2}{4}$.
- 4 Let *A* be a 3×9 matrix. All elements of *A* are positive integers. We call an $m \times n$ submatrix of *A* "ox" if the sum of its elements is divisible by 10, and we call an element of *A* "carboxylic" if it is not an element of any "ox" submatrix. Find the largest possible number of "carboxylic" elements in *A*.
- First Part
- 1 Let the set $A = (a_1, a_2, a_3, a_4)$. If the sum of elements in every 3-element subset of A makes up the set B = (-1, 5, 3, 8), then find the set A.
- **2** Find the range of the function $f(x) = \frac{\sqrt{x^2+1}}{x-1}$.
- **3** Let a, b be positive reals such that $\frac{1}{a} + \frac{1}{b} \le 2\sqrt{2}$ and $(a b)^2 = 4(ab)^3$. Find $\log_a b$.
- 4 If $\cos^5 x \sin^5 x < 7(\sin^3 x \cos^3 x)$ (for $x \in [0, 2\pi)$), then find the range of x.
- **5** We want to arrange 7 students to attend 5 sports events, but students *A* and *B* can't take part in the same event, every event has its own participants, and every student can only attend one event. How many arrangements are there?

AoPS Community

2011 China Second Round Olympiad

- 6 In a tetrahedral *ABCD*, given that $\angle ADB = \angle BDC = \angle CDA = \frac{\pi}{3}$, AD = BD = 3, and CD = 2. Find the radius of the circumsphere of *ABCD*.
- 7 The line x 2y 1 = 0 insects the parabola $y^2 = 4x$ at two different points A, B. Let C be a point on the parabola such that $\angle ACB = \frac{\pi}{2}$. Find the coordinate of point C.

8	Given that $a_n = \binom{200}{n} \cdot 6^{\frac{200-n}{3}} \cdot (\frac{1}{\sqrt{2}})^n$ ($1 \le n \le 95$). How many integers are there in the sequence
	$\{a_n\}$?

9 Let $f(x) = |\log(x+1)|$ and let a, b be two real numbers (a < b) satisfying the equations $f(a) = f\left(-\frac{b+1}{a+1}\right)$ and $f(10a+6b+21) = 4\log 2$. Find a, b.

10 A sequence a_n satisfies $a_1 = 2t - 3$ ($t \neq 1, -1$), and $a_{n+1} = \frac{(2t^{n+1} - 3)a_n + 2(t-1)t^n - 1}{a_n + 2t^n - 1}$.

i) Find a_n ,

ii) If t > 0, compare a_{n+1} with a_n .

11 A line ℓ with slope of $\frac{1}{3}$ insects the ellipse $C : \frac{x^2}{36} + \frac{y^2}{4} = 1$ at points A, B and the point $P(3\sqrt{2}, \sqrt{2})$ is above the line ℓ .

(1) Prove that the locus of the incenter of triangle *PAB* is a segment,

(2) If $\angle APB = \frac{\pi}{3}$, then find the area of triangle *PAB*.

Art of Problem Solving is an ACS WASC Accredited School.