Art of Problem Solving

AoPS Community

Second Round Olympiad 2011

www.artofproblemsolving.com/community/c4288
by littletush, Cheercheerup, Issl

- \quad Second Part

1 Let P, Q be the midpoints of diagonals $A C, B D$ in cyclic quadrilateral $A B C D$. If $\angle B P A=$ $\angle D P A$, prove that $\angle A Q B=\angle C Q B$.

2 For any integer $n \geq 4$, prove that there exists a n-degree polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{0}$
satisfying the two following properties:
(1) a_{i} is a positive integer for any $i=0,1, \ldots, n-1$, and
(2) For any two positive integers m and $k(k \geq 2)$ there exist distinct positive integers $r_{1}, r_{2}, \ldots, r_{k}$, such that $f(m) \neq \prod_{i=1}^{k} f\left(r_{i}\right)$.

3 Given $n \geq 4$ real numbers $a_{n}>\ldots>a_{1}>0$. For $r>0$, let $f_{n}(r)$ be the number of triples (i, j, k) with $1 \leq i<j<k \leq n$ such that $\frac{a_{j}-a_{i}}{a_{k}-a_{j}}=r$. Prove that $f_{n}(r)<\frac{n^{2}}{4}$.
$4 \quad$ Let A be a 3×9 matrix. All elements of A are positive integers. We call an $m \times n$ submatrix of A "ox" if the sum of its elements is divisible by 10 , and we call an element of A "carboxylic" if it is not an element of any "ox" submatrix. Find the largest possible number of "carboxylic" elements in A.

- First Part

1 Let the set $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. If the sum of elements in every 3 -element subset of A makes up the set $B=(-1,5,3,8)$, then find the set A.

2 Find the range of the function $f(x)=\frac{\sqrt{x^{2}+1}}{x-1}$.
3 Let a, b be positive reals such that $\frac{1}{a}+\frac{1}{b} \leq 2 \sqrt{2}$ and $(a-b)^{2}=4(a b)^{3}$. Find $\log _{a} b$.
4 If $\cos ^{5} x-\sin ^{5} x<7\left(\sin ^{3} x-\cos ^{3} x\right)($ for $x \in[0,2 \pi))$, then find the range of x.
$5 \quad$ We want to arrange 7 students to attend 5 sports events, but students A and B can't take part in the same event, every event has its own participants, and every student can only attend one event. How many arrangements are there?

6 In a tetrahedral $A B C D$, given that $\angle A D B=\angle B D C=\angle C D A=\frac{\pi}{3}, A D=B D=3$, and $C D=2$. Find the radius of the circumsphere of $A B C D$.
$7 \quad$ The line $x-2 y-1=0$ insects the parabola $y^{2}=4 x$ at two different points A, B. Let C be a point on the parabola such that $\angle A C B=\frac{\pi}{2}$. Find the coordinate of point C.

8 Given that $a_{n}=\binom{200}{n} \cdot 6 \frac{200-n}{3} \cdot\left(\frac{1}{\sqrt{2}}\right)^{n}(1 \leq n \leq 95)$. How many integers are there in the sequence $\left\{a_{n}\right\}$?

9 Let $f(x)=|\log (x+1)|$ and let a, b be two real numbers $(a<b)$ satisfying the equations $f(a)=$ $f\left(-\frac{b+1}{a+1}\right)$ and $f(10 a+6 b+21)=4 \log 2$. Find a, b.

10 A sequence a_{n} satisfies $a_{1}=2 t-3(t \neq 1,-1)$, and $a_{n+1}=\frac{\left(2 t^{n+1}-3\right) a_{n}+2(t-1) t^{n}-1}{a_{n}+2 t^{n}-1}$. i) Find a_{n},
ii) If $t>0$, compare a_{n+1} with a_{n}.

11 A line ℓ with slope of $\frac{1}{3}$ insects the ellipse $C: \frac{x^{2}}{36}+\frac{y^{2}}{4}=1$ at points A, B and the point $P(3 \sqrt{2}, \sqrt{2})$ is above the line ℓ.
(1) Prove that the locus of the incenter of triangle $P A B$ is a segment,
(2) If $\angle A P B=\frac{\pi}{3}$, then find the area of triangle $P A B$.

