AoPS Community

www.artofproblemsolving.com/community/c430268 by gausskarl

- Day 1

1 There are 44 distinct holes in a line and 2017 ants. Each ant comes out of a hole and crawls along the line with a constant speed into another hole, then comes in. Let T be the set of moments for which the ant comes in or out of the holes. Given that $|T| \leq 45$ and the speeds of the ants are distinct. Prove that there exists two ants that don't collide.

2 For each positive integer n, set $x_{n}=\binom{2 n}{n}$.
a. Prove that if $\frac{2017^{k}}{2}<n<2017^{k}$ for some positive integer k then 2017 divides x_{n}.
b. Find all positive integer $h>1$ such that there exists positive integers N, T such that $\left(x_{n}\right)_{n>N}$ is periodic $\bmod h$ with period T.

3 Triangle $A B C$ with incircle (I) touches the sides $A B, B C, A C$ at F, D, E, res. I_{b}, I_{c} are B - and C - excenters of $A B C . P, Q$ are midpoints of $I_{b} E, I_{c} F .(P A C) \cap A B=\{A, R\},(Q A B) \cap A C=$ $\{A, S\}$.
a. Prove that $P R, Q S, A I$ are concurrent.
b. $D E, D F$ cut $I_{b} I_{c}$ at K, res. $E J \cap F K=\{M\}$. $P E, Q F$ cut $(P A C),(Q A B)$ at X, Y res. Prove that $B Y, C X, A M$ are concurrent.

- Day 2

1 Triangle $A B C$ is inscribed in circle (O). A varies on (O) such that $A B>B C . M$ is the midpoint of $A C$. The circle with diameter $B M$ intersects (O) at R. $R M$ intersects (O) at Q and intersects $B C$ at P. The circle with diameter $B P$ intersects $A B, B O$ at K, S in this order.
a. Prove that $S R$ passes through the midpoint of $K P$.
b. Let N be the midpoint of $B C$. The radical axis of circles with diameters $A N, B M$ intersects $S R$ at E. Prove that $M E$ always passes through a fixed point.

2 Given 2017 positive real numbers $a_{1}, a_{2}, \ldots, a_{2017}$. For each $n>2017$, set

$$
a_{n}=\max \left\{a_{i_{1}} a_{i_{2}} a_{i_{3}} \mid i_{1}+i_{2}+i_{3}=n, 1 \leq i_{1} \leq i_{2} \leq i_{3} \leq n-1\right\} .
$$

Prove that there exists a positive integer $m \leq 2017$ and a positive integer $N>4 m$ such that $a_{n} a_{n-4 m}=a_{n-2 m}^{2}$ for every $n>N$.

3 For each integer $n>0$, a permutation $a_{1}, a_{2}, \ldots, a_{2 n}$ of $1,2, \ldots 2 n$ is called beautiful if for every $1 \leq i<j \leq 2 n, a_{i}+a_{n+i}=2 n+1$ and $a_{i}-a_{i+1} \not \equiv a_{j}-a_{j+1}(\bmod 2 n+1)$ (suppose that $\left.a_{2 n+1}=a_{1}\right)$.
a. For $n=6$, point out a beautiful permutation.
b. Prove that there exists a beautiful permutation for every n.

