AoPS Community

Final Round - Korea 2017

www.artofproblemsolving.com/community/c430322
by j_-_d, rkm0959

Day 125 March 2017

1 A acute triangle $\triangle A B C$ has circumcenter O. The circumcircle of $O A B$, called O_{1}, and the circumcircle of $O A C$, called O_{2}, meets $B C$ again at $D(\neq B)$ and $E(\neq C)$ respectively. The perpendicular bisector of $B C$ hits $A C$ again at F. Prove that the circumcenter of $\triangle A D E$ lies on $A C$ if and only if the centers of O_{1}, O_{2} and F are colinear.

2 For a positive integer $n,\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ is a $n+1$-tuple with integer entries.
For all $k=0,1, \cdots, n$, we denote b_{k} as the number of $k \mathbf{s}$ in $\left(a_{0}, a_{1}, \cdots, a_{n}\right)$.
For all $k=0,1, \cdots, n$, we denote c_{k} as the number of $k \mathbf{s}$ in $\left(b_{0}, b_{1}, \cdots, b_{n}\right)$.
Find all $\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ which satisfies $a_{0}=c_{0}, a_{1}=c_{1}, \cdots, a_{n}=c_{n}$.
3 For a positive integer n, denote $c_{n}=2017^{n}$. A function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfies the following two conditions.

1. For all positive integers $m, n, f(m+n) \leq 2017 \cdot f(m) \cdot f(n+325)$.
2. For all positive integer n, we have $0<f\left(c_{n+1}\right)<f\left(c_{n}\right)^{2017}$.

Prove that there exists a sequence a_{1}, a_{2}, \cdots which satisfies the following. For all n, k which satisfies $a_{k}<n$, we have $f(n)^{c_{k}}<f\left(c_{k}\right)^{n}$.

Day 226 March 2017

4 For a positive integer $n \geq 2$, define a sequence $a_{1}, a_{2}, \cdots, a_{n}$ as the following.

$$
\begin{gathered}
a_{1}=\frac{n(2 n-1)(2 n+1)}{3} \\
a_{k}=\frac{(n+k-1)(n-k+1)}{2(k-1)(2 k+1)} a_{k-1},(k=2,3, \cdots n)
\end{gathered}
$$

(a) Show that $a_{1}, a_{2}, \cdots a_{n}$ are all integers.
(b) Prove that there are exactly one number out of $a_{1}, a_{2}, \cdots a_{n}$ which is not a multiple of $2 n-1$ and exactly one number out of $a_{1}, a_{2}, \cdots a_{n}$ which is not a multiple of $2 n+1$ if and only if $2 n-1$ and $2 n+1$ are all primes.
$5 \quad$ Let there be cyclic quadrilateral $A B C D$ with L as the midpoint of $A B$ and M as the midpoint of $C D$. Let $A C \cap B D=E$, and let rays $A B$ and $D C$ meet again at F. Let $L M \cap D E=P$. Let
Q be the foot of the perpendicular from P to $E M$. If the orthocenter of $\triangle F L M$ is E, prove the following equality.

$$
\frac{E P^{2}}{E Q}=\frac{1}{2}\left(\frac{B D^{2}}{D F}-\frac{B C^{2}}{C F}\right)
$$

6 A room has 2017 boxes in a circle. A set of boxes is friendly if there are at least two boxes in the set, and for each boxes in the set, if we go clockwise starting from the box, we would pass either 0 or odd number of boxes before encountering a new box in the set. 30 students enter the room and picks a set of boxes so that the set is friendly, and each students puts a letter inside all of the boxes that he/she chose. If the set of the boxes which have 30 letters inside is not friendly, show that there exists two students A, B and boxes a, b satisfying the following condition.
(i). A chose a but not b, and B chose b but not a.
(ii). Starting from a and going clockwise to b, the number of boxes that we pass through, not including a and b, is not an odd number, and none of A or B chose such boxes that we passed.

