AOPS Online

AoPS Community

EGMO 2014

www.artofproblemsolving.com/community/c4329 by shivangjindal, 61plus

Day 1 April 12th

1	Determine all real constants t such that whenever a , b and c are the lengths of sides of a triangle, then so are $a^2 + bct$, $b^2 + cat$, $c^2 + abt$.
2	Let <i>D</i> and <i>E</i> be points in the interiors of sides <i>AB</i> and <i>AC</i> , respectively, of a triangle <i>ABC</i> , such that $DB = BC = CE$. Let the lines <i>CD</i> and <i>BE</i> meet at <i>F</i> . Prove that the incentre <i>I</i> of triangle <i>ABC</i> , the orthocentre <i>H</i> of triangle <i>DEF</i> and the midpoint <i>M</i> of the arc <i>BAC</i> of the circumcircle of triangle <i>ABC</i> are collinear.
3	We denote the number of positive divisors of a positive integer m by $d(m)$ and the number of distinct prime divisors of m by $\omega(m)$. Let k be a positive integer. Prove that there exist infinitely many positive integers n such that $\omega(n) = k$ and $d(n)$ does not divide $d(a^2+b^2)$ for any positive integers a, b satisfying $a + b = n$.
Day 2	April 13th
4	Determine all positive integers $n \ge 2$ for which there exist integers $x_1, x_2, \ldots, x_{n-1}$ satisfying the condition that if $0 < i < n, 0 < j < n, i \neq j$ and n divides $2i + j$, then $x_i < x_j$.
5	Let <i>n</i> be a positive integer. We have <i>n</i> boxes where each box contains a non-negative number of pebbles. In each move we are allowed to take two pebbles from a box we choose, throw away one of the pebbles and put the other pebble in another box we choose. An initial configuration of pebbles is called <i>solvable</i> if it is possible to reach a configuration with no empty box. in a

of pebbles is called *solvable* if it is possible to reach a configuration with no empty box, in a finite (possibly zero) number of moves. Determine all initial configurations of pebbles which are not solvable, but become solvable when an additional pebble is added to a box, no matter which box is chosen.

6 Determine all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the condition

$$f(y^{2} + 2xf(y) + f(x)^{2}) = (y + f(x))(x + f(y))$$

for all real numbers x and y.

Art of Problem Solving is an ACS WASC Accredited School.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱