

AoPS Community

2017 Polish MO Finals

Finals 2017

www.artofproblemsolving.com/community/c433691 by j____d

-	Day 1
1	Points P and Q lie respectively on sides AB and AC of a triangle ABC and $BP = CQ$. Segments BQ and CP cross at R . Circumscribed circles of triangles BPR and CQR cross again at point S different from R . Prove that point S lies on the bisector of angle BAC .
2	A sequence $(a_1, a_2,, a_k)$ consisting of pairwise distinct squares of an $n \times n$ chessboard is called a <i>cycle</i> if $k \ge 4$ and squares a_i and a_{i+1} have a common side for all $i = 1, 2,, k$, where $a_{k+1} = a_1$. Subset X of this chessboard's squares is <i>mischievous</i> if each cycle on it contains at least one square in X.
	Determine all real numbers C with the following property: for each integer $n \ge 2$, on an $n \times n$ chessboard there exists a mischievous subset consisting of at most Cn^2 squares.
3	Integers a_1, a_2, \ldots, a_n satisfy
	$1 < a_1 < a_2 < \ldots < a_n < 2a_1.$
	If m is the number of distinct prime factors of $a_1a_2\cdots a_n$, then prove that
	$(a_1a_2\cdots a_n)^{m-1} \ge (n!)^m.$
-	Day 2
4	Prove that the set of positive integers \mathbb{Z}^+ can be represented as a sum of five pairwise distinct subsets with the following property: each 5-tuple of numbers of form $(n, 2n, 3n, 4n, 5n)$, where $n \in \mathbb{Z}^+$, contains exactly one number from each of these five subsets.
5	Point <i>M</i> is the midpoint of <i>BC</i> of a triangle <i>ABC</i> , in which $AB = AC$. Point <i>D</i> is the orthogonal projection of <i>M</i> on <i>AB</i> . Circle ω is inscribed in triangle <i>ACD</i> and tangent to segments <i>AD</i> and <i>AC</i> at <i>K</i> and <i>L</i> respectively. Lines tangent to ω which pass through <i>M</i> cross line <i>KL</i> at <i>X</i> and <i>Y</i> , where points <i>X</i> , <i>K</i> , <i>L</i> and <i>Y</i> lie on <i>KL</i> in this specific order. Prove that points <i>M</i> , <i>D</i> , <i>X</i> and <i>Y</i> are concyclic.

6 Three sequences (a_0, a_1, \ldots, a_n) , (b_0, b_1, \ldots, b_n) , $(c_0, c_1, \ldots, c_{2n})$ of non-negative real numbers

2017 Polish MO Finals

AoPS Community

are given such that for all $0 \le i, j \le n$ we have $a_i b_j \le (c_{i+j})^2$. Prove that

$$\sum_{i=0}^{n} a_i \cdot \sum_{j=0}^{n} b_j \le \left(\sum_{k=0}^{2n} c_k\right)^2.$$

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.