Art of Problem Solving

AoPS Community

Finals 2017

www.artofproblemsolving.com/community/c433691
by j_-d

- Day 1

1 Points P and Q lie respectively on sides $A B$ and $A C$ of a triangle $A B C$ and $B P=C Q$. Segments $B Q$ and $C P$ cross at R. Circumscribed circles of triangles $B P R$ and $C Q R$ cross again at point S different from R. Prove that point S lies on the bisector of angle $B A C$.

2 A sequence ($a_{1}, a_{2}, \ldots, a_{k}$) consisting of pairwise distinct squares of an $n \times n$ chessboard is called a cycle if $k \geq 4$ and squares a_{i} and a_{i+1} have a common side for all $i=1,2, \ldots, k$, where $a_{k+1}=a_{1}$. Subset X of this chessboard's squares is mischievous if each cycle on it contains at least one square in X.

Determine all real numbers C with the following property: for each integer $n \geq 2$, on an $n \times n$ chessboard there exists a mischievous subset consisting of at most $C n^{2}$ squares.

3 Integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfy

$$
1<a_{1}<a_{2}<\ldots<a_{n}<2 a_{1} .
$$

If m is the number of distinct prime factors of $a_{1} a_{2} \cdots a_{n}$, then prove that

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{m-1} \geq(n!)^{m}
$$

- Day 2

4 Prove that the set of positive integers \mathbb{Z}^{+}can be represented as a sum of five pairwise distinct subsets with the following property: each 5 -tuple of numbers of form $(n, 2 n, 3 n, 4 n, 5 n)$, where $n \in \mathbb{Z}^{+}$, contains exactly one number from each of these five subsets.

5 Point M is the midpoint of $B C$ of a triangle $A B C$, in which $A B=A C$. Point D is the orthogonal projection of M on $A B$. Circle ω is inscribed in triangle $A C D$ and tangent to segments $A D$ and $A C$ at K and L respectively. Lines tangent to ω which pass through M cross line $K L$ at X and Y, where points X, K, L and Y lie on $K L$ in this specific order. Prove that points M, D, X and Y are concyclic.

6 Three sequences $\left(a_{0}, a_{1}, \ldots, a_{n}\right),\left(b_{0}, b_{1}, \ldots, b_{n}\right),\left(c_{0}, c_{1}, \ldots, c_{2 n}\right)$ of non-negative real numbers
are given such that for all $0 \leq i, j \leq n$ we have $a_{i} b_{j} \leq\left(c_{i+j}\right)^{2}$. Prove that

$$
\sum_{i=0}^{n} a_{i} \cdot \sum_{j=0}^{n} b_{j} \leq\left(\sum_{k=0}^{2 n} c_{k}\right)^{2}
$$

