AoPS Community

ELMO Problems 1999

www.artofproblemsolving.com/community/c4340
by v_Enhance

1 In nonisosceles triangle $A B C$ the excenters of the triangle opposite B and C be X_{B} and X_{C}, respectively. Let the external angle bisector of A intersect the circumcircle of $\triangle A B C$ again at Q. Prove that $Q X_{B}=Q B=Q C=Q X_{C}$.

2 Mr. Fat moves around on the lattice points according to the following rules: From point (x, y) he may move to any of the points $(y, x),(3 x,-2 y),(-2 x, 3 y),(x+1, y+4)$ and $(x-1, y-4)$. Show that if he starts at $(0,1)$ he can never get to $(0,0)$.

3 Prove that

$$
2^{6} \frac{a b c d+1}{(a+b+c+d)^{2}} \leq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}
$$

for $a, b, c, d>0$.
4 Let $a_{1}, a_{2}, a_{3}, \cdots$ be an infinite sequence of real numbers. Prove that there exists a increasing sequence $j_{1}, j_{2}, j_{3}, \cdots$ of positive integers such that the sequence $a_{j_{1}}, a_{j_{2}}, a_{j_{3}}, \cdots$ is either nondecreasing or nonincreasing.

