AoPS Community

ELMO Problems 2003

www.artofproblemsolving.com/community/c4341
by v_Enhance

1 Let $A B C D E F$ be a convex equilateral hexagon with sides of length 1 . Let R_{1} be the area of the region contained within both $A C E$ and $B D F$, and let R_{2} be the area of the region within the hexagon outside both triangles. Prove that:

$$
\min \{[A C E],[B D F]\}+R_{2}-R_{1} \leq \frac{3 \sqrt{3}}{4}
$$

2 In a set of 30 MOPpers, prove that some two MOPpers have an even number of common friends.

3 Let k be a positive integer for which the equation

$$
2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}=k
$$

has some solution in positive integers a, b, c. Prove that the equation has a solution for which a, b and c are the sides of a possibly degenerate triangle.

4 Let $x, y, z \geq 1$ be real numbers such that

$$
\frac{1}{x^{2}-1}+\frac{1}{y^{2}-1}+\frac{1}{z^{2}-1}=1 .
$$

Prove that

$$
\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1} \leq 1 .
$$

