

AoPS Community

2009 ELMO Problems

ELMO Problems 2009

www.artofproblemsolving.com/community/c4342 by v_Enhance

Day 1	
1	Let a, b, c be positive integers such that $a^2 - bc$ is a square. Prove that $2a + b + c$ is not prime.
	Evan o'Dorney
2	Let <i>ABC</i> be a triangle such that $AB < AC$. Let <i>P</i> lie on a line through <i>A</i> parallel to line <i>BC</i> such that <i>C</i> and <i>P</i> are on the same side of line <i>AB</i> . Let <i>M</i> be the midpoint of segment <i>BC</i> . Define <i>D</i> on segment <i>BC</i> such that $\angle BAD = \angle CAM$, and define <i>T</i> on the extension of ray <i>CB</i> beyond <i>B</i> so that $\angle BAT = \angle CAP$. Given that lines <i>PC</i> and <i>AD</i> intersect at <i>Q</i> , that lines <i>PD</i> and <i>AB</i> intersect at <i>R</i> , and that <i>S</i> is the midpoint of segment <i>DT</i> , prove that if <i>A</i> , <i>P</i> , <i>Q</i> , and <i>R</i> lie on a circle, then <i>Q</i> , <i>R</i> , and <i>S</i> are collinear.
	David Rush
3	Let a, b, c be nonnegative real numbers. Prove that
	$a(a-b)(a-2b) + b(b-c)(b-2c) + c(c-a)(c-2a) \ge 0.$
	Wenyu Cao
Day 2	
4	Let n be a positive integer. Given n^2 points in a unit square, prove that there exists a broken line of length $2n + 1$ that passes through all the points.
	Allen Yuan
5	Let $ABCDEFG$ be a regular heptagon with center O . Let M be the centroid of $\triangle ABD$. Prove that $\cos^2(\angle GOM)$ is rational and determine its value.
	Evan o'Dorney
6	Let p be an odd prime and x be an integer such that $p \mid x^3 - 1$ but $p \nmid x - 1$. Prove that
	$p \mid (p-1)! \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots - \frac{x^{p-1}}{p-1} \right).$
	John Berman

AoPS Online AoPS Academy AoPS Catery

Art of Problem Solving is an ACS WASC Accredited School.