AoPS Community

ELMO Problems 2009

www.artofproblemsolving.com/community/c4342
by v_Enhance

Day 1

1 Let a, b, c be positive integers such that $a^{2}-b c$ is a square. Prove that $2 a+b+c$ is not prime.
Evan o'Dorney
2 Let $A B C$ be a triangle such that $A B<A C$. Let P lie on a line through A parallel to line $B C$ such that C and P are on the same side of line $A B$. Let M be the midpoint of segment $B C$. Define D on segment $B C$ such that $\angle B A D=\angle C A M$, and define T on the extension of ray $C B$ beyond B so that $\angle B A T=\angle C A P$. Given that lines $P C$ and $A D$ intersect at Q, that lines $P D$ and $A B$ intersect at R, and that S is the midpoint of segment $D T$, prove that if A, P, Q, and R lie on a circle, then Q, R, and S are collinear.

David Rush

3 Let a, b, c be nonnegative real numbers. Prove that

$$
a(a-b)(a-2 b)+b(b-c)(b-2 c)+c(c-a)(c-2 a) \geq 0 .
$$

Wenyu Cao

Day 2

4 Let n be a positive integer. Given n^{2} points in a unit square, prove that there exists a broken line of length $2 n+1$ that passes through all the points.

Allen Yuan

5 Let $A B C D E F G$ be a regular heptagon with center O. Let M be the centroid of $\triangle A B D$. Prove that $\cos ^{2}(\angle G O M)$ is rational and determine its value.
Evan o'Dorney
$6 \quad$ Let p be an odd prime and x be an integer such that $p \mid x^{3}-1$ but $p \nmid x-1$. Prove that

$$
p \left\lvert\,(p-1)!\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots-\frac{x^{p-1}}{p-1}\right) .\right.
$$

John Berman

