

AoPS Community

2012 ELMO Problems

www.artofproblemsolving.com/community/c4345 by math154

Day 1	June 16th	
-------	-----------	--

1	In acute triangle <i>ABC</i> , let <i>D</i> , <i>E</i> , <i>F</i> denote the feet of the altitudes from <i>A</i> , <i>B</i> , <i>C</i> , respectively, and let ω be the circumcircle of $\triangle AEF$. Let ω_1 and ω_2 be the circles through <i>D</i> tangent to ω at <i>E</i> and <i>F</i> , respectively. Show that ω_1 and ω_2 meet at a point <i>P</i> on <i>BC</i> other than <i>D</i> .
	Ray Li.
2	Find all ordered pairs of positive integers (m, n) for which there exists a set $C = \{c_1, \ldots, c_k\}$ $(k \ge 1)$ of colors and an assignment of colors to each of the mn unit squares of a $m \times n$ grid such that for every color $c_i \in C$ and unit square S of color c_i , exactly two direct (non-diagonal) neighbors of S have color c_i .
	David Yang.
3	Let f, g be polynomials with complex coefficients such that $gcd(\deg f, \deg g) = 1$. Suppose that there exist polynomials $P(x, y)$ and $Q(x, y)$ with complex coefficients such that $f(x) + g(y) = P(x, y)Q(x, y)$. Show that one of P and Q must be constant.
	Victor Wang.
Day 2	June 17th
4	Let a_0, b_0 be positive integers, and define $a_{i+1} = a_i + \lfloor \sqrt{b_i} \rfloor$ and $b_{i+1} = b_i + \lfloor \sqrt{a_i} \rfloor$ for all $i \ge 0$.
	Show that there exists a positive integer n such that $a_n = b_n$.
5	Show that there exists a positive integer n such that $a_n = b_n$.
	Show that there exists a positive integer n such that $a_n = b_n$. <i>David Yang</i> . Let ABC be an acute triangle with $AB < AC$, and let D and E be points on side BC such that $BD = CE$ and D lies between B and E . Suppose there exists a point P inside ABC such that
	Show that there exists a positive integer n such that $a_n = b_n$. <i>David Yang</i> . Let ABC be an acute triangle with $AB < AC$, and let D and E be points on side BC such that $BD = CE$ and D lies between B and E . Suppose there exists a point P inside ABC such that $PD \parallel AE$ and $\angle PAB = \angle EAC$. Prove that $\angle PBA = \angle PCA$.

AoPS Community

2012 ELMO Problems

lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically shifts the d_i 's by k (so that for every i, d_i is replaced by d_{i-k} , where indices are taken modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

Bobby Shen.

Act of Problem Solving is an ACS WASC Accredited School.