Art of Problem Solving

AoPS Community

ELMO Problems 2012

www.artofproblemsolving.com/community/c4345
by math 154

Day 1 June 16th
1 In acute triangle $A B C$, let D, E, F denote the feet of the altitudes from A, B, C, respectively, and let ω be the circumcircle of $\triangle A E F$. Let ω_{1} and ω_{2} be the circles through D tangent to ω at E and F, respectively. Show that ω_{1} and ω_{2} meet at a point P on $B C$ other than D.
Ray Li.
2 Find all ordered pairs of positive integers (m, n) for which there exists a set $C=\left\{c_{1}, \ldots, c_{k}\right\}$ ($k \geq 1$) of colors and an assignment of colors to each of the $m n$ unit squares of a $m \times n$ grid such that for every color $c_{i} \in C$ and unit square S of color c_{i}, exactly two direct (non-diagonal) neighbors of S have color c_{i}.
David Yang.
3 Let f, g be polynomials with complex coefficients such that $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$. Suppose that there exist polynomials $P(x, y)$ and $Q(x, y)$ with complex coefficients such that $f(x)+g(y)=$ $P(x, y) Q(x, y)$. Show that one of P and Q must be constant.
Victor Wang.
Day 2 June 17th
4 Let a_{0}, b_{0} be positive integers, and define $a_{i+1}=a_{i}+\left\lfloor\sqrt{b_{i}}\right\rfloor$ and $b_{i+1}=b_{i}+\left\lfloor\sqrt{a_{i}}\right\rfloor$ for all $i \geq 0$. Show that there exists a positive integer n such that $a_{n}=b_{n}$.

David Yang.
$5 \quad$ Let $A B C$ be an acute triangle with $A B<A C$, and let D and E be points on side $B C$ such that $B D=C E$ and D lies between B and E. Suppose there exists a point P inside $A B C$ such that $P D \| A E$ and $\angle P A B=\angle E A C$. Prove that $\angle P B A=\angle P C A$.

Calvin Deng.
6 A diabolical combination lock has n dials (each with c possible states), where $n, c>1$. The dials are initially set to states $d_{1}, d_{2}, \ldots, d_{n}$, where $0 \leq d_{i} \leq c-1$ for each $1 \leq i \leq n$. Unfortunately, the actual states of the dials (the d_{i} 's) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_{i}\left(0 \leq c_{i} \leq c-1\right)$, so that every dial is now in a state $d_{i}^{\prime} \equiv d_{i}+c_{i}(\bmod c)$ with $0 \leq d_{i}^{\prime} \leq c-1$. After each turn, the
lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically shifts the d_{i} 's by k (so that for every i, d_{i} is replaced by d_{i-k}, where indices are taken modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

Bobby Shen.

