

AoPS Community

ELMO Problems 2013

www.artofproblemsolving.com/community/c4346 by v_Enhance

Day 1 June 15th

1 Let $a_1, a_2, ..., a_9$ be nine real numbers, not necessarily distinct, with average m. Let A denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of A?

Proposed by Ray Li

2 Let a, b, c be positive reals satisfying $a + b + c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$.

Proposed by Evan Chen

3 Let $m_1, m_2, ..., m_{2013} > 1$ be 2013 pairwise relatively prime positive integers and $A_1, A_2, ..., A_{2013}$ be 2013 (possibly empty) sets with $A_i \subseteq \{1, 2, ..., m_i - 1\}$ for i = 1, 2, ..., 2013. Prove that there is a positive integer N such that

 $N \le (2|A_1|+1) (2|A_2|+1) \cdots (2|A_{2013}|+1)$

and for each i = 1, 2, ..., 2013, there does *not* exist $a \in A_i$ such that m_i divides N - a.

Proposed by Victor Wang

Day 2 June 16th

4 Triangle *ABC* is inscribed in circle ω . A circle with chord *BC* intersects segments *AB* and *AC* again at *S* and *R*, respectively. Segments *BR* and *CS* meet at *L*, and rays *LR* and *LS* intersect ω at *D* and *E*, respectively. The internal angle bisector of $\angle BDE$ meets line *ER* at *K*. Prove that if BE = BR, then $\angle ELK = \frac{1}{2} \angle BCD$.

Proposed by Evan Chen

5 For what polynomials P(n) with integer coefficients can a positive integer be assigned to every lattice point in \mathbb{R}^3 so that for every integer $n \ge 1$, the sum of the n^3 integers assigned to any $n \times n \times n$ grid of lattice points is divisible by P(n)?

Proposed by Andre Arslan

6 Consider a function $f : \mathbb{Z} \to \mathbb{Z}$ such that for every integer $n \ge 0$, there are at most $0.001n^2$ pairs of integers (x, y) for which $f(x + y) \ne f(x) + f(y)$ and $\max\{|x|, |y|\} \le n$. Is it possible that for some integer $n \ge 0$, there are more than n integers a such that $f(a) \ne a \cdot f(1)$ and $|a| \le n$?

AoPS Community

Proposed by David Yang

2013 ELMO Problems

Act of Problem Solving is an ACS WASC Accredited School.