

ELMO Shortlist 2012

www.artofproblemsolving.com/community/c4350 by math154

- Algebra
- 1 Let $x_1, x_2, x_3, y_1, y_2, y_3$ be nonzero real numbers satisfying $x_1 + x_2 + x_3 = 0, y_1 + y_2 + y_3 = 0$. Prove that

$$\frac{x_1x_2 + y_1y_2}{\sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)}} + \frac{x_2x_3 + y_2y_3}{\sqrt{(x_2^2 + y_2^2)(x_3^2 + y_3^2)}} + \frac{x_3x_1 + y_3y_1}{\sqrt{(x_3^2 + y_3^2)(x_1^2 + y_1^2)}} \ge -\frac{3}{2}.$$

Ray Li, Max Schindler.

2 Let
$$a, b, c$$
 be three positive real numbers such that $a \le b \le c$ and $a + b + c = 1$. Prove that

$$\frac{a+c}{\sqrt{a^2+c^2}} + \frac{b+c}{\sqrt{b^2+c^2}} + \frac{a+b}{\sqrt{a^2+b^2}} \le \frac{3\sqrt{6(b+c)^2}}{\sqrt{(a^2+b^2)(b^2+c^2)(c^2+a^2)}}.$$

Owen Goff.

3 Prove that any polynomial of the form $1 + a_n x^n + a_{n+1} x^{n+1} + \dots + a_k x^k$ ($k \ge n$) has at least n-2 non-real roots (counting multiplicity), where the a_i ($n \le i \le k$) are real and $a_k \ne 0$.

David Yang.

4 Let a_0, b_0 be positive integers, and define $a_{i+1} = a_i + \lfloor \sqrt{b_i} \rfloor$ and $b_{i+1} = b_i + \lfloor \sqrt{a_i} \rfloor$ for all $i \ge 0$. Show that there exists a positive integer n such that $a_n = b_n$.

David Yang.

5 Prove that if m, n are relatively prime positive integers, $x^m - y^n$ is irreducible in the complex numbers. (A polynomial P(x, y) is irreducible if there do not exist nonconstant polynomials f(x, y) and g(x, y) such that P(x, y) = f(x, y)g(x, y) for all x, y.)

David Yang.

6 Let $a, b, c \ge 0$. Show that $(a^2 + 2bc)^{2012} + (b^2 + 2ca)^{2012} + (c^2 + 2ab)^{2012} \le (a^2 + b^2 + c^2)^{2012} + 2(ab + bc + ca)^{2012}$.

Calvin Deng.

7 Let f, g be polynomials with complex coefficients such that $gcd(\deg f, \deg g) = 1$. Suppose that there exist polynomials P(x, y) and Q(x, y) with complex coefficients such that f(x) + g(y) = P(x, y)Q(x, y). Show that one of P and Q must be constant.

Victor Wang.

- 8 Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that f(x)f(y)f(x+y) = f(xy)(f(x) + f(y)) for all $x, y \in \mathbb{Q}$. Sammy Luo and Alex Zhu.
- 9 Let a, b, c be distinct positive real numbers, and let k be a positive integer greater than 3. Show that

$$\left|\frac{a^{k+1}(b-c) + b^{k+1}(c-a) + c^{k+1}(a-b)}{a^k(b-c) + b^k(c-a) + c^k(a-b)}\right| \ge \frac{k+1}{3(k-1)}(a+b+c)$$

and

$$\left|\frac{a^{k+2}(b-c)+b^{k+2}(c-a)+c^{k+2}(a-b)}{a^k(b-c)+b^k(c-a)+c^k(a-b)}\right| \ge \frac{(k+1)(k+2)}{3k(k-1)}(a^2+b^2+c^2).$$

Calvin Deng.

10 Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a cyclic octagon. Let B_i by the intersection of A_iA_{i+1} and $A_{i+3}A_{i+4}$. (Take $A_9 = A_1, A_{10} = A_2$, etc.) Prove that B_1, B_2, \ldots, B_8 lie on a conic.

David Yang.

- Combinatorics

1 Let $n \ge 2$ be a positive integer. Given a sequence (s_i) of n distinct real numbers, define the "class" of the sequence to be the sequence $(a_1, a_2, \ldots, a_{n-1})$, where a_i is 1 if $s_{i+1} > s_i$ and -1 otherwise.

Find the smallest integer m such that there exists a sequence (w_i) of length m such that for every possible class of a sequence of length n, there is a subsequence of (w_i) that has that class.

David Yang.

2 Determine whether it's possible to cover a *K*₂₀₁₂ with

a) 1000 K₁₀₀₆'s;

b) 1000 K_{1006,1006}'s.

David Yang.

3 Find all ordered pairs of positive integers (m, n) for which there exists a set $C = \{c_1, \ldots, c_k\}$ $(k \ge 1)$ of colors and an assignment of colors to each of the mn unit squares of a $m \times n$ grid such that for every color $c_i \in C$ and unit square S of color c_i , exactly two direct (non-diagonal) neighbors of S have color c_i .

David Yang.

4 A tournament on 2k vertices contains no 7-cycles. Show that its vertices can be partitioned into two sets, each with size k, such that the edges between vertices of the same set do not determine any 3-cycles.

Calvin Deng.

5 Form the infinite graph A by taking the set of primes p congruent to $1 \pmod{4}$, and connecting p and q if they are quadratic residues modulo each other. Do the same for a graph B with the primes $1 \pmod{8}$. Show A and B are isomorphic to each other.

Linus Hamilton.

6 Consider a directed graph G with n vertices, where 1-cycles and 2-cycles are permitted. For any set S of vertices, let $N^+(S)$ denote the out-neighborhood of S (i.e. set of successors of S), and define $(N^+)^k(S) = N^+((N^+)^{k-1}(S))$ for $k \ge 2$.

For fixed *n*, let f(n) denote the maximum possible number of distinct sets of vertices in $\{(N^+)^k(X)\}_{k=1}^{\infty}$, where *X* is some subset of V(G). Show that there exists n > 2012 such that $f(n) < 1.0001^n$.

Linus Hamilton.

7 Consider a graph *G* with *n* vertices and at least $n^2/10$ edges. Suppose that each edge is colored in one of *c* colors such that no two incident edges have the same color. Assume further that no cycles of size 10 have the same set of colors. Prove that there is a constant *k* such that *c* is at least $kn^{\frac{8}{5}}$ for any *n*.

David Yang.

8 Consider the equilateral triangular lattice in the complex plane defined by the Eisenstein integers; let the ordered pair (x, y) denote the complex number $x + y\omega$ for $\omega = e^{2\pi i/3}$. We define an ω -chessboard polygon to be a (non self-intersecting) polygon whose sides are situated along lines of the form x = a or y = b, where a and b are integers. These lines divide the interior into unit triangles, which are shaded alternately black and white so that adjacent triangles have different colors. To tile an ω -chessboard polygon by lozenges is to exactly cover the polygon by non-overlapping rhombuses consisting of two bordering triangles. Finally, a *tasteful tiling* is one such that for every unit hexagon tiled by three lozenges, each lozenge has a black triangle on its left (defined by clockwise orientation) and a white triangle on its right (so the lozenges are BW, BW in clockwise order).

AoPS Community 2012 ELMO Shortlis	
	a) Prove that if an ω -chessboard polygon can be tiled by lozenges, then it can be done so tastefully.
	b) Prove that such a tasteful tiling is unique.
	Victor Wang.
9	For a set A of integers, define $f(A) = \{x^2 + xy + y^2 : x, y \in A\}$. Is there a constant c such that for all positive integers n, there exists a set A of size n such that $ f(A) \le cn$?
	David Yang.
-	Geometry
1	In acute triangle <i>ABC</i> , let <i>D</i> , <i>E</i> , <i>F</i> denote the feet of the altitudes from <i>A</i> , <i>B</i> , <i>C</i> , respectively, and let ω be the circumcircle of $\triangle AEF$. Let ω_1 and ω_2 be the circles through <i>D</i> tangent to ω at <i>E</i> and <i>F</i> , respectively. Show that ω_1 and ω_2 meet at a point <i>P</i> on <i>BC</i> other than <i>D</i> .
	Ray Li.
2	In triangle <i>ABC</i> , <i>P</i> is a point on altitude <i>AD</i> . <i>Q</i> , <i>R</i> are the feet of the perpendiculars from <i>P</i> to <i>AB</i> , <i>AC</i> , and <i>QP</i> , <i>RP</i> meet <i>BC</i> at <i>S</i> and <i>T</i> respectively. the circumcircles of <i>BQS</i> and <i>CRT</i> meet <i>QR</i> at <i>X</i> , <i>Y</i> .
	a) Prove SX, TY, AD are concurrent at a point Z.
	b) Prove Z is on QR iff $Z = H$, where H is the orthocenter of ABC .
	Ray Li.
3	<i>ABC</i> is a triangle with incenter <i>I</i> . The foot of the perpendicular from <i>I</i> to <i>BC</i> is <i>D</i> , and the foot of the perpendicular from <i>I</i> to <i>AD</i> is <i>P</i> . Prove that $\angle BPD = \angle DPC$.
	Alex Zhu.
4	Circles Ω and ω are internally tangent at point <i>C</i> . Chord <i>AB</i> of Ω is tangent to ω at <i>E</i> , where <i>E</i> is the midpoint of <i>AB</i> . Another circle, ω_1 is tangent to Ω , ω , and <i>AB</i> at <i>D</i> , <i>Z</i> , and <i>F</i> respectively. Rays <i>CD</i> and <i>AB</i> meet at <i>P</i> . If <i>M</i> is the midpoint of major arc <i>AB</i> , show that $\tan \angle ZEP = \frac{PE}{CM}$.
	Ray Li.
5	Let <i>ABC</i> be an acute triangle with $AB < AC$, and let <i>D</i> and <i>E</i> be points on side <i>BC</i> such that $BD = CE$ and <i>D</i> lies between <i>B</i> and <i>E</i> . Suppose there exists a point <i>P</i> inside <i>ABC</i> such that $PD \parallel AE$ and $\angle PAB = \angle EAC$. Prove that $\angle PBA = \angle PCA$.
	Calvin Deng.

6	In $\triangle ABC$, H is the orthocenter, and AD , BE are arbitrary cevians. Let ω_1, ω_2 denote the circles with diameters AD and BE , respectively. HD , HE meet ω_1, ω_2 again at F, G . DE meets ω_1, ω_2 again at P_1, P_2 respectively. FG meets ω_1, ω_2 again Q_1, Q_2 respectively. P_1H, Q_1H meet ω_1 at R_1, S_1 respectively. P_2H, Q_2H meet ω_2 at R_2, S_2 respectively. Let $P_1Q_1 \cap P_2Q_2 = X$, and $R_1S_1 \cap R_2S_2 = Y$. Prove that X, Y, H are collinear.
	Ray Li.
7	Let $\triangle ABC$ be an acute triangle with circumcenter O such that $AB < AC$, let Q be the intersection of the external bisector of $\angle A$ with BC , and let P be a point in the interior of $\triangle ABC$ such that $\triangle BPA$ is similar to $\triangle APC$. Show that $\angle QPA + \angle OQB = 90^{\circ}$.
	Alex Zhu.
-	Number Theory
1	Find all positive integers n such that $4^n + 6^n + 9^n$ is a square.
	David Yang, Alex Zhu.
2	For positive rational x, if x is written in the form p/q with p, q positive relatively prime integers, define $f(x) = p + q$. For example, $f(1) = 2$.
	a) Prove that if $f(x) = f(mx/n)$ for rational x and positive integers m, n , then $f(x)$ divides $ m - n $.
	b) Let n be a positive integer. If all x which satisfy $f(x) = f(2^n x)$ also satisfy $f(x) = 2^n - 1$, find all possible values of n.
	Anderson Wang.
3	Let $s(k)$ be the number of ways to express k as the sum of distinct 2012^{th} powers, where order does not matter. Show that for every real number c there exists an integer n such that $s(n) > cn$.
	Alex Zhu.
4	Do there exist positive integers $b, n > 1$ such that when n is expressed in base b , there are more than n distinct permutations of its digits? For example, when $b = 4$ and $n = 18$, $18 = 102_4$, but 102 only has 6 digit arrangements. (Leading zeros are allowed in the permutations.)
	Lewis Chen.
5	Let $n > 2$ be a positive integer and let p be a prime. Suppose that the nonzero integers are colored in n colors. Let a_1, a_2, \ldots, a_n be integers such that for all $1 \le i \le n, p^i \nmid a_i$ and $p^{i-1} \mid a_i$. In terms of n , p , and $\{a_i\}_{i=1}^n$, determine if there must exist integers x_1, x_2, \ldots, x_n of the same color such that $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$.

Ravi Jagadeesan.

6 Prove that if a and b are positive integers and ab > 1, then

 $\left\lfloor \frac{(a-b)^2 - 1}{ab} \right\rfloor = \left\lfloor \frac{(a-b)^2 - 1}{ab - 1} \right\rfloor.$

Here $\lfloor x \rfloor$ denotes the greatest integer not exceeding x.

Calvin Deng.

7 A diabolical combination lock has n dials (each with c possible states), where n, c > 1. The dials are initially set to states d_1, d_2, \ldots, d_n , where $0 \le d_i \le c - 1$ for each $1 \le i \le n$. Unfortunately, the actual states of the dials (the d_i 's) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount c_i ($0 \le c_i \le c - 1$), so that every dial is now in a state $d'_i \equiv d_i + c_i \pmod{c}$ with $0 \le d'_i \le c - 1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically shifts the d'_i 's by k (so that for every i, d_i is replaced by d_{i-k} , where indices are taken modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

Bobby Shen.

8 Fix two positive integers $a, k \ge 2$, and let $f \in \mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers n, there exists a rational number x satisfying $f(x) = f(a^n)^k$. Prove that there exists a polynomial $g \in \mathbb{Q}[x]$ such that $f(g(x)) = f(x)^k$ for all real x.

Victor Wang.

9 Are there positive integers m, n such that there exist at least 2012 positive integers x such that both $m - x^2$ and $n - x^2$ are perfect squares?

David Yang.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

© 2019 AoPS Incorporated 6