Art of Problem Solving

AoPS Community

ELMO Shortlist 2012

www.artofproblemsolving.com/community/c4350
by math 154

- Algebra

1 Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ be nonzero real numbers satisfying $x_{1}+x_{2}+x_{3}=0, y_{1}+y_{2}+y_{3}=0$. Prove that

$$
\frac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)}}+\frac{x_{2} x_{3}+y_{2} y_{3}}{\sqrt{\left(x_{2}^{2}+y_{2}^{2}\right)\left(x_{3}^{2}+y_{3}^{2}\right)}}+\frac{x_{3} x_{1}+y_{3} y_{1}}{\sqrt{\left(x_{3}^{2}+y_{3}^{2}\right)\left(x_{1}^{2}+y_{1}^{2}\right)}} \geq-\frac{3}{2} .
$$

Ray Li, Max Schindler.

2 Let a, b, c be three positive real numbers such that $a \leq b \leq c$ and $a+b+c=1$. Prove that

$$
\frac{a+c}{\sqrt{a^{2}+c^{2}}}+\frac{b+c}{\sqrt{b^{2}+c^{2}}}+\frac{a+b}{\sqrt{a^{2}+b^{2}}} \leq \frac{3 \sqrt{6}(b+c)^{2}}{\sqrt{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)}} .
$$

Owen Goff.

3 Prove that any polynomial of the form $1+a_{n} x^{n}+a_{n+1} x^{n+1}+\cdots+a_{k} x^{k}(k \geq n)$ has at least $n-2$ non-real roots (counting multiplicity), where the $a_{i}(n \leq i \leq k)$ are real and $a_{k} \neq 0$.

David Yang.
4 Let a_{0}, b_{0} be positive integers, and define $a_{i+1}=a_{i}+\left\lfloor\sqrt{b_{i}}\right\rfloor$ and $b_{i+1}=b_{i}+\left\lfloor\sqrt{a_{i}}\right\rfloor$ for all $i \geq 0$. Show that there exists a positive integer n such that $a_{n}=b_{n}$.
David Yang.
5 Prove that if m, n are relatively prime positive integers, $x^{m}-y^{n}$ is irreducible in the complex numbers. (A polynomial $P(x, y)$ is irreducible if there do not exist nonconstant polynomials $f(x, y)$ and $g(x, y)$ such that $P(x, y)=f(x, y) g(x, y)$ for all x, y.)

David Yang.
6 Let $a, b, c \geq 0$. Show that $\left(a^{2}+2 b c\right)^{2012}+\left(b^{2}+2 c a\right)^{2012}+\left(c^{2}+2 a b\right)^{2012} \leq\left(a^{2}+b^{2}+c^{2}\right)^{2012}+$ $2(a b+b c+c a)^{2012}$.
Calvin Deng.

7 Let f, g be polynomials with complex coefficients such that $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$. Suppose that there exist polynomials $P(x, y)$ and $Q(x, y)$ with complex coefficients such that $f(x)+g(y)=$ $P(x, y) Q(x, y)$. Show that one of P and Q must be constant.

Victor Wang.

$8 \quad$ Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ such that $f(x) f(y) f(x+y)=f(x y)(f(x)+f(y))$ for all $x, y \in \mathbb{Q}$.
Sammy Luo and Alex Zhu.
9 Let a, b, c be distinct positive real numbers, and let k be a positive integer greater than 3 . Show that

$$
\left|\frac{a^{k+1}(b-c)+b^{k+1}(c-a)+c^{k+1}(a-b)}{a^{k}(b-c)+b^{k}(c-a)+c^{k}(a-b)}\right| \geq \frac{k+1}{3(k-1)}(a+b+c)
$$

and

$$
\left|\frac{a^{k+2}(b-c)+b^{k+2}(c-a)+c^{k+2}(a-b)}{a^{k}(b-c)+b^{k}(c-a)+c^{k}(a-b)}\right| \geq \frac{(k+1)(k+2)}{3 k(k-1)}\left(a^{2}+b^{2}+c^{2}\right) .
$$

Calvin Deng.

10 Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8}$ be a cyclic octagon. Let B_{i} by the intersection of $A_{i} A_{i+1}$ and $A_{i+3} A_{i+4}$. (Take $A_{9}=A_{1}, A_{10}=A_{2}$, etc.) Prove that $B_{1}, B_{2}, \ldots, B_{8}$ lie on a conic.

David Yang.

- Combinatorics

1 Let $n \geq 2$ be a positive integer. Given a sequence $\left(s_{i}\right)$ of n distinct real numbers, define the "class" of the sequence to be the sequence $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$, where a_{i} is 1 if $s_{i+1}>s_{i}$ and -1 otherwise.

Find the smallest integer m such that there exists a sequence $\left(w_{i}\right)$ of length m such that for every possible class of a sequence of length n, there is a subsequence of $\left(w_{i}\right)$ that has that class.

David Yang.
2 Determine whether it's possible to cover a K_{2012} with
a) $1000 K_{1006}$'s;
b) $1000 K_{1006,1006}$'s.

David Yang.

3 Find all ordered pairs of positive integers (m, n) for which there exists a set $C=\left\{c_{1}, \ldots, c_{k}\right\}$ ($k \geq 1$) of colors and an assignment of colors to each of the $m n$ unit squares of a $m \times n$ grid such that for every color $c_{i} \in C$ and unit square S of color c_{i}, exactly two direct (non-diagonal) neighbors of S have color c_{i}.

David Yang.
4 A tournament on $2 k$ vertices contains no 7 -cycles. Show that its vertices can be partitioned into two sets, each with size k, such that the edges between vertices of the same set do not determine any 3 -cycles.

Calvin Deng.

$5 \quad$ Form the infinite graph A by taking the set of primes p congruent to $1(\bmod 4)$, and connecting p and q if they are quadratic residues modulo each other. Do the same for a graph B with the primes $1(\bmod 8)$. Show A and B are isomorphic to each other.

Linus Hamilton.

6 Consider a directed graph G with n vertices, where 1-cycles and 2-cycles are permitted. For any set S of vertices, let $N^{+}(S)$ denote the out-neighborhood of S (i.e. set of successors of S), and define $\left(N^{+}\right)^{k}(S)=N^{+}\left(\left(N^{+}\right)^{k-1}(S)\right)$ for $k \geq 2$.
For fixed n, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\left\{\left(N^{+}\right)^{k}(X)\right\}_{k=1}^{\infty}$, where X is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^{n}$.
Linus Hamilton.
7 Consider a graph G with n vertices and at least $n^{2} / 10$ edges. Suppose that each edge is colored in one of c colors such that no two incident edges have the same color. Assume further that no cycles of size 10 have the same set of colors. Prove that there is a constant k such that c is at least $k n^{\frac{8}{5}}$ for any n.
David Yang.
8 Consider the equilateral triangular lattice in the complex plane defined by the Eisenstein integers; let the ordered pair (x, y) denote the complex number $x+y \omega$ for $\omega=e^{2 \pi i / 3}$. We define an ω-chessboard polygon to be a (non self-intersecting) polygon whose sides are situated along lines of the form $x=a$ or $y=b$, where a and b are integers. These lines divide the interior into unit triangles, which are shaded alternately black and white so that adjacent triangles have different colors. To tile an ω-chessboard polygon by lozenges is to exactly cover the polygon by non-overlapping rhombuses consisting of two bordering triangles. Finally, a tasteful tiling is one such that for every unit hexagon tiled by three lozenges, each lozenge has a black triangle on its left (defined by clockwise orientation) and a white triangle on its right (so the lozenges are BW, BW, BW in clockwise order).
a) Prove that if an ω-chessboard polygon can be tiled by lozenges, then it can be done so tastefully.
b) Prove that such a tasteful tiling is unique.

Victor Wang.

$9 \quad$ For a set A of integers, define $f(A)=\left\{x^{2}+x y+y^{2}: x, y \in A\right\}$. Is there a constant c such that for all positive integers n, there exists a set A of size n such that $|f(A)| \leq c n$?
David Yang.

- Geometry

1 In acute triangle $A B C$, let D, E, F denote the feet of the altitudes from A, B, C, respectively, and let ω be the circumcircle of $\triangle A E F$. Let ω_{1} and ω_{2} be the circles through D tangent to ω at E and F, respectively. Show that ω_{1} and ω_{2} meet at a point P on $B C$ other than D.

Ray Li.
2 In triangle $A B C, P$ is a point on altitude $A D . Q, R$ are the feet of the perpendiculars from P to $A B, A C$, and $Q P, R P$ meet $B C$ at S and T respectively. the circumcircles of $B Q S$ and $C R T$ meet $Q R$ at X, Y.
a) Prove $S X, T Y, A D$ are concurrent at a point Z.
b) Prove Z is on $Q R$ iff $Z=H$, where H is the orthocenter of $A B C$.

Ray Li.
$3 A B C$ is a triangle with incenter I. The foot of the perpendicular from I to $B C$ is D, and the foot of the perpendicular from I to $A D$ is P. Prove that $\angle B P D=\angle D P C$.
Alex Zhu.
$4 \quad$ Circles Ω and ω are internally tangent at point C. Chord $A B$ of Ω is tangent to ω at E, where E is the midpoint of $A B$. Another circle, ω_{1} is tangent to Ω, ω, and $A B$ at D, Z, and F respectively. Rays $C D$ and $A B$ meet at P. If M is the midpoint of major arc $A B$, show that $\tan \angle Z E P=\frac{P E}{C M}$. Ray Li.
$5 \quad$ Let $A B C$ be an acute triangle with $A B<A C$, and let D and E be points on side $B C$ such that $B D=C E$ and D lies between B and E. Suppose there exists a point P inside $A B C$ such that $P D \| A E$ and $\angle P A B=\angle E A C$. Prove that $\angle P B A=\angle P C A$.

Calvin Deng.

6 In $\triangle A B C, H$ is the orthocenter, and $A D, B E$ are arbitrary cevians. Let ω_{1}, ω_{2} denote the circles with diameters $A D$ and $B E$, respectively. $H D, H E$ meet ω_{1}, ω_{2} again at F, G. $D E$ meets ω_{1}, ω_{2} again at P_{1}, P_{2} respectively. $F G$ meets ω_{1}, ω_{2} again Q_{1}, Q_{2} respectively. $P_{1} H, Q_{1} H$ meet ω_{1} at R_{1}, S_{1} respectively. $P_{2} H, Q_{2} H$ meet ω_{2} at R_{2}, S_{2} respectively. Let $P_{1} Q_{1} \cap P_{2} Q_{2}=X$, and $R_{1} S_{1} \cap R_{2} S_{2}=Y$. Prove that X, Y, H are collinear.

Ray Li.
7 Let $\triangle A B C$ be an acute triangle with circumcenter O such that $A B<A C$, let Q be the intersection of the external bisector of $\angle A$ with $B C$, and let P be a point in the interior of $\triangle A B C$ such that $\triangle B P A$ is similar to $\triangle A P C$. Show that $\angle Q P A+\angle O Q B=90^{\circ}$.

Alex Zhu.

- Number Theory
$1 \quad$ Find all positive integers n such that $4^{n}+6^{n}+9^{n}$ is a square.
David Yang, Alex Zhu.
2 For positive rational x, if x is written in the form p / q with p, q positive relatively prime integers, define $f(x)=p+q$. For example, $f(1)=2$.
a) Prove that if $f(x)=f(m x / n)$ for rational x and positive integers m, n, then $f(x)$ divides $|m-n|$.
b) Let n be a positive integer. If all x which satisfy $f(x)=f\left(2^{n} x\right)$ also satisfy $f(x)=2^{n}-1$, find all possible values of n.
Anderson Wang.
3 Let $s(k)$ be the number of ways to express k as the sum of distinct $2012^{\text {th }}$ powers, where order does not matter. Show that for every real number c there exists an integer n such that $s(n)>c n$. Alex Zhu.

4 Do there exist positive integers $b, n>1$ such that when n is expressed in base b, there are more than n distinct permutations of its digits? For example, when $b=4$ and $n=18,18=102_{4}$, but 102 only has 6 digit arrangements. (Leading zeros are allowed in the permutations.)

Lewis Chen.
5 Let $n>2$ be a positive integer and let p be a prime. Suppose that the nonzero integers are colored in n colors. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers such that for all $1 \leq i \leq n, p^{i} \nmid a_{i}$ and $p^{i-1} \mid a_{i}$. In terms of n, p, and $\left\{a_{i}\right\}_{i=1}^{n}$, determine if there must exist integers $x_{1}, x_{2}, \ldots, x_{n}$ of the same color such that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0$.

Ravi Jagadeesan.

6 Prove that if a and b are positive integers and $a b>1$, then

$$
\left\lfloor\frac{(a-b)^{2}-1}{a b}\right\rfloor=\left\lfloor\frac{(a-b)^{2}-1}{a b-1}\right\rfloor .
$$

Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding x.

Calvin Deng.

7 A diabolical combination lock has n dials (each with c possible states), where $n, c>1$. The dials are initially set to states $d_{1}, d_{2}, \ldots, d_{n}$, where $0 \leq d_{i} \leq c-1$ for each $1 \leq i \leq n$. Unfortunately, the actual states of the dials (the d_{i} 's) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_{i}\left(0 \leq c_{i} \leq c-1\right)$, so that every dial is now in a state $d_{i}^{\prime} \equiv d_{i}+c_{i}(\bmod c)$ with $0 \leq d_{i}^{\prime} \leq c-1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically shifts the d_{i} 's by k (so that for every i, d_{i} is replaced by d_{i-k}, where indices are taken modulo n).
Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.
Bobby Shen.
8 Fix two positive integers $a, k \geq 2$, and let $f \in \mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers n, there exists a rational number x satisfying $f(x)=f\left(a^{n}\right)^{k}$. Prove that there exists a polynomial $g \in \mathbb{Q}[x]$ such that $f(g(x))=f(x)^{k}$ for all real x.

Victor Wang.
9 Are there positive integers m, n such that there exist at least 2012 positive integers x such that both $m-x^{2}$ and $n-x^{2}$ are perfect squares?

David Yang.

