AoPS Community

ELMO Shortlist 2014

www.artofproblemsolving.com/community/c4352
by v_Enhance, parmenides51

- Algebra

1 In a non-obtuse triangle $A B C$, prove that

$$
\frac{\sin A \sin B}{\sin C}+\frac{\sin B \sin C}{\sin A}+\frac{\sin C \sin A}{\sin B} \geq \frac{5}{2} .
$$

Proposed by Ryan Alweiss
2 Given positive reals a, b, c, p, q satisfying $a b c=1$ and $p \geq q$, prove that

$$
p\left(a^{2}+b^{2}+c^{2}\right)+q\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq(p+q)(a+b+c) .
$$

Proposed by AJ Dennis
3 Let a, b, c, d, e, f be positive real numbers. Given that $d e f+d e+e f+f d=4$, show that

$$
((a+b) d e+(b+c) e f+(c+a) f d)^{2} \geq 12(a b d e+b c e f+c a f d)
$$

Proposed by Allen Liu
4 Find all triples (f, g, h) of injective functions from the set of real numbers to itself satisfying

$$
\begin{aligned}
f(x+f(y)) & =g(x)+h(y) \\
g(x+g(y)) & =h(x)+f(y) \\
h(x+h(y)) & =f(x)+g(y)
\end{aligned}
$$

for all real numbers x and y. (We say a function F is injective if $F(a) \neq F(b)$ for any distinct real numbers a and b.)

Proposed by Evan Chen

$5 \quad$ Let \mathbb{R}^{*} denote the set of nonzero reals. Find all functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ satisfying

$$
f\left(x^{2}+y\right)+1=f\left(x^{2}+1\right)+\frac{f(x y)}{f(x)}
$$

for all $x, y \in \mathbb{R}^{*}$ with $x^{2}+y \neq 0$.
Proposed by Ryan Alweiss

6 Let a, b, c be positive reals such that $a+b+c=a b+b c+c a$. Prove that

$$
(a+b)^{a b-b c}(b+c)^{b c-c a}(c+a)^{c a-a b} \geq a^{c a} b^{a b} c^{b c} .
$$

Proposed by Sammy Luo

$7 \quad$ Find all positive integers n with $n \geq 2$ such that the polynomial

$$
P\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}+a_{2}^{n}+\ldots+a_{n}^{n}-n a_{1} a_{2} \ldots a_{n}
$$

in the n variables $a_{1}, a_{2}, \ldots, a_{n}$ is irreducible over the real numbers, i.e. it cannot be factored as the product of two nonconstant polynomials with real coefficients.

Proposed by Yang Liu

8 Let a, b, c be positive reals with $a^{2014}+b^{2014}+c^{2014}+a b c=4$. Prove that

$$
\frac{a^{2013}+b^{2013}-c}{c^{2013}}+\frac{b^{2013}+c^{2013}-a}{a^{2013}}+\frac{c^{2013}+a^{2013}-b}{b^{2013}} \geq a^{2012}+b^{2012}+c^{2012}
$$

Proposed by David Stoner
9 Let a, b, c be positive reals. Prove that

$$
\sqrt{\frac{a^{2}\left(b c+a^{2}\right)}{b^{2}+c^{2}}}+\sqrt{\frac{b^{2}\left(c a+b^{2}\right)}{c^{2}+a^{2}}}+\sqrt{\frac{c^{2}\left(a b+c^{2}\right)}{a^{2}+b^{2}}} \geq a+b+c .
$$

Proposed by Robin Park

- Combinatorics

1 You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the following operations:

1. Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta.
2. Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead ends up.
3. Do either of the above, switching the roles of the words "magenta" and "left" with those of "yellow" and "right", respectively.
4. Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magentayellow, appearing somewhere in the circle, and swap the orders of each pair.
5. Remove four consecutive beads of one color.

Starting with the circle: "yellow, yellow, magenta, magenta, cyan, cyan, cyan", determine whether or not you can reach
a) "yellow, magenta, yellow, magenta, cyan, cyan, cyan",
b) "cyan, yellow, cyan, magenta, cyan",
c) "magenta, magenta, cyan, cyan, cyan",
d) "yellow, cyan, cyan, cyan".

Proposed by Sammy Luo

2 A $2^{2014}+1$ by $2^{2014}+1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer n greater than 2, there do not exist pairwise distinct black squares $s_{1}, s_{2}, \ldots, s_{n}$ such that s_{i} and s_{i+1} share an edge for $i=1,2, \ldots, n$ (here $s_{n+1}=s_{1}$).
What is the maximum possible number of filled black squares?

Proposed by David Yang

3 We say a finite set S of points in the plane is very if for every point X in S, there exists an inversion with center X mapping every point in S other than X to another point in S (possibly the same point).
(a) Fix an integer n. Prove that if $n \geq 2$, then any line segment $\overline{A B}$ contains a unique very set S of size n such that $A, B \in S$.
(b) Find the largest possible size of a very set not contained in any line.
(Here, an inversion with center O and radius r sends every point P other than O to the point P^{\prime} along ray $O P$ such that $O P \cdot O P^{\prime}=r^{2}$.)

Proposed by Sammy Luo
4 Let r and b be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every r years, while a blue block falls exactly once every b years.
(a) Suppose that r and b are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $r b$ years in which the column is initially empty. Determine, in terms of r and b, the number of blocks in the column at the end.
(b) Now suppose r and b are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t=r, 2 r, \ldots,(b-1) r$ years, while a blue block falls at times $t=b, 2 b, \ldots,(r-1) b$ years. Prove that at time $t=r b$, the number of blocks in the column is $|1+2(r-1)(b+r)-8 S|$, where

$$
S=\left\lfloor\frac{2 r}{r+b}\right\rfloor+\left\lfloor\frac{4 r}{r+b}\right\rfloor+\ldots+\left\lfloor\frac{(r+b-1) r}{r+b}\right\rfloor .
$$

Proposed by Sammy Luo

5 Let n be a positive integer. For any k, denote by a_{k} the number of permutations of $\{1,2, \ldots, n\}$ with exactly k disjoint cycles. (For example, if $n=3$ then $a_{2}=3$ since (1)(23), (2)(31), (3)(12) are the only such permutations.) Evaluate

$$
a_{n} n^{n}+a_{n-1} n^{n-1}+\cdots+a_{1} n
$$

Proposed by Sammy Luo
6 Let f_{0} be the function from \mathbb{Z}^{2} to $\{0,1\}$ such that $f_{0}(0,0)=1$ and $f_{0}(x, y)=0$ otherwise. For each positive integer m, let $f_{m}(x, y)$ be the remainder when

$$
f_{m-1}(x, y)+\sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j, y+k)
$$

is divided by 2 .
Finally, for each nonnegative integer n, let a_{n} denote the number of pairs (x, y) such that $f_{n}(x, y)=$ 1.

Find a closed form for a_{n}.
Proposed by Bobby Shen

- Geometry

1 Let $A B C$ be a triangle with symmedian point K. Select a point A_{1} on line $B C$ such that the lines $A B, A C, A_{1} K$ and $B C$ are the sides of a cyclic quadrilateral. Define B_{1} and C_{1} similarly. Prove that A_{1}, B_{1}, and C_{1} are collinear.

Proposed by Sammy Luo
$2 A B C D$ is a cyclic quadrilateral inscribed in the circle ω. Let $A B \cap C D=E, A D \cap B C=F$. Let ω_{1}, ω_{2} be the circumcircles of $A E F, C E F$, respectively. Let $\omega \cap \omega_{1}=G, \omega \cap \omega_{2}=H$. Show that $A C, B D, G H$ are concurrent.
Proposed by Yang Liu
3 Let $A_{1} A_{2} A_{3} \cdots A_{2013}$ be a cyclic 2013-gon. Prove that for every point P not the circumcenter of the 2013-gon, there exists a point $Q \neq P$ such that $\frac{A_{i} P}{A_{i} Q}$ is constant for $i \in\{1,2,3, \cdots, 2013\}$.
Proposed by Robin Park
4 Let $A B C D$ be a quadrilateral inscribed in circle ω. Define $E=A A \cap C D, F=A A \cap B C, G=$ $B E \cap \omega, H=B E \cap A D, I=D F \cap \omega$, and $J=D F \cap A B$. Prove that $G I, H J$, and the B-symmedian are concurrent.

Proposed by Robin Park

AoPS Community

2014 ELMO Shortlist

5 Let P be a point in the interior of an acute triangle $A B C$, and let Q be its isogonal conjugate. Denote by ω_{P} and ω_{Q} the circumcircles of triangles $B P C$ and $B Q C$, respectively. Suppose the circle with diameter $\overline{A P}$ intersects ω_{P} again at M, and line $A M$ intersects ω_{P} again at X. Similarly, suppose the circle with diameter $\overline{A Q}$ intersects ω_{Q} again at N, and line $A N$ intersects ω_{Q} again at Y.

Prove that lines $M N$ and $X Y$ are parallel.
(Here, the points P and Q are isogonal conjugates with respect to $\triangle A B C$ if the internal angle bisectors of $\angle B A C, \angle C B A$, and $\angle A C B$ also bisect the angles $\angle P A Q, \angle P B Q$, and $\angle P C Q$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)

Proposed by Sammy Luo
6 Let $A B C D$ be a cyclic quadrilateral with center O.
Suppose the circumcircles of triangles $A O B$ and $C O D$ meet again at G, while the circumcircles of triangles $A O D$ and $B O C$ meet again at H.
Let ω_{1} denote the circle passing through G as well as the feet of the perpendiculars from G to $A B$ and $C D$.
Define ω_{2} analogously as the circle passing through H and the feet of the perpendiculars from H to $B C$ and $D A$.
Show that the midpoint of $G H$ lies on the radical axis of ω_{1} and ω_{2}.
Proposed by Yang Liu
7 Let $A B C$ be a triangle inscribed in circle ω with center O, let ω_{A} be its A-mixtilinear incircle, ω_{B} be its B-mixtilinear incircle, ω_{C} be its C-mixtilinear incircle, and X be the radical center of ω_{A}, ω_{B}, ω_{C}. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points at which $\omega_{A}, \omega_{B}, \omega_{C}$ are tangent to ω. Prove that $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$ and $O X$ are concurrent.

Proposed by Robin Park
8 In triangle $A B C$ with incenter I and circumcenter O, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points of tangency of its circumcircle with its A, B, C-mixtilinear circles, respectively. Let ω_{A} be the circle through A^{\prime} that is tangent to $A I$ at I, and define ω_{B}, ω_{C} similarly. Prove that $\omega_{A}, \omega_{B}, \omega_{C}$ have a common point X other than I, and that $\angle A X O=\angle O X A^{\prime}$.

Proposed by Sammy Luo
$9 \quad$ Let P be a point inside a triangle $A B C$ such that $\angle P A C=\angle P C B$. Let the projections of P onto $B C, C A$, and $A B$ be X, Y, Z respectively. Let O be the circumcenter of $\triangle X Y Z, H$ be the foot of the altitude from B to $A C, N$ be the midpoint of $A C$, and T be the point such that $T Y P O$ is a parallelogram. Show that $\triangle T H N$ is similar to $\triangle P B C$.

Proposed by Sammy Luo

AoPS Community

10 We are given triangles $A B C$ and $D E F$ such that $D \in B C, E \in C A, F \in A B, A D \perp E F, B E \perp$ $F D, C F \perp D E$. Let the circumcenter of $D E F$ be O, and let the circumcircle of $D E F$ intersect $B C, C A, A B$ again at R, S, T respectively. Prove that the perpendiculars to $B C, C A, A B$ through D, E, F respectively intersect at a point X, and the lines $A R, B S, C T$ intersect at a point Y, such that O, X, Y are collinear.

Proposed by Sammy Luo
11 Let $A B C$ be a triangle with circumcenter O. Let P be a point inside $A B C$, so let the points D, E, F be on $B C, A C, A B$ respectively so that the Miquel point of $D E F$ with respect to $A B C$ is P. Let the reflections of D, E, F over the midpoints of the sides that they lie on be R, S, T. Let the Miquel point of $R S T$ with respect to the triangle $A B C$ be Q. Show that $O P=O Q$.

Proposed by Yang Liu
12 Let $A B=A C$ in $\triangle A B C$, and let D be a point on segment $A B$. The tangent at D to the circumcircle ω of $B C D$ hits $A C$ at E. The other tangent from E to ω touches it at F, and $G=B F \cap C D$, $H=A G \cap B C$. Prove that $B H=2 H C$.

Proposed by David Stoner
13 Let $A B C$ be a nondegenerate acute triangle with circumcircle ω and let its incircle γ touch $A B, A C, B C$ at X, Y, Z respectively. Let $X Y$ hit arcs $A B, A C$ of ω at M, N respectively, and let $P \neq X, Q \neq Y$ be the points on γ such that $M P=M X, N Q=N Y$. If I is the center of γ, prove that P, I, Q are collinear if and only if $\angle B A C=90^{\circ}$.
Proposed by David Stoner

- Number Theory

1 Does there exist a strictly increasing infinite sequence of perfect squares $a_{1}, a_{2}, a_{3}, \ldots$ such that for all $k \in \mathbb{Z}^{+}$we have that $13^{k} \mid a_{k}+1$?

Proposed by Jesse Zhang
2 Define the Fibanocci sequence recursively by $F_{1}=1, F_{2}=1$ and $F_{i+2}=F_{i}+F_{i+1}$ for all i. Prove that for all integers $b, c>1$, there exists an integer n such that the sum of the digits of F_{n} when written in base b is greater than c.

Proposed by Ryan Alweiss
$3 \quad$ Let t and n be fixed integers each at least 2 . Find the largest positive integer m for which there exists a polynomial P, of degree n and with rational coefficients, such that the following property holds: exactly one of

$$
\frac{P(k)}{t^{k}} \text { and } \frac{P(k)}{t^{k+1}}
$$

is an integer for each $k=0,1, \ldots, m$.
Proposed by Michael Kural
4 Let \mathbb{N} denote the set of positive integers, and for a function f, let $f^{k}(n)$ denote the function f applied k times. Call a function $f: \mathbb{N} \rightarrow \mathbb{N}$ saturated if

$$
f^{f^{f(n)}(n)}(n)=n
$$

for every positive integer n. Find all positive integers m for which the following holds: every saturated function f satisfies $f^{2014}(m)=m$.

Proposed by Evan Chen
5 Define a beautiful number to be an integer of the form a^{n}, where $a \in\{3,4,5,6\}$ and n is a positive integer.
Prove that each integer greater than 2 can be expressed as the sum of pairwise distinct beautiful numbers.

Proposed by Matthew Babbitt

6 Show that the numerator of

$$
\frac{2^{p-1}}{p+1}-\left(\sum_{k=0}^{p-1} \frac{\binom{p-1}{k}}{(1-k p)^{2}}\right)
$$

is a multiple of p^{3} for any odd prime p.
Proposed by Yang Liu
7 Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then $n+c$ divides $a^{n}+b^{n}+n$.

Proposed by Evan Chen
$8 \quad$ Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:
(i) The greatest common divisor of the sequence $f(1), f(2), \ldots$ is 1 .
(ii) For all sufficiently large integers n, we have $f(n) \neq 1$ and

$$
f(a)^{n} \mid f(a+b)^{a^{n-1}}-f(b)^{a^{n-1}}
$$

for all positive integers a and b.
Proposed by Yang Liu

9 Let d be a positive integer and let ε be any positive real. Prove that for all sufficiently large primes p with $\operatorname{gcd}(p-1, d) \neq 1$, there exists an positive integer less than p^{r} which is not a d th power modulo p, where r is defined by

$$
\log r=\varepsilon-\frac{1}{\operatorname{gcd}(d, p-1)}
$$

Proposed by Shashwat Kishore
10 Find all positive integer bases $b \geq 9$ so that the number

$$
\frac{\overbrace{11 \cdots 1}^{n-11^{\prime} s} 0 \overbrace{77 \cdots 7}^{n-1} 8 \overbrace{11 \cdots 1_{b}}^{7^{\prime} s}}{3}
$$

is a perfect cube in base 10 for all sufficiently large positive integers n.
Proposed by Yang Liu
11 Let p be a prime satisfying $p^{2} \mid 2^{p-1}-1$, and let n be a positive integer. Define

$$
f(x)=\frac{(x-1)^{p^{n}}-\left(x^{p^{n}}-1\right)}{p(x-1)}
$$

Find the largest positive integer N such that there exist polynomials $g(x), h(x)$ with integer coefficients and an integer r satisfying $f(x)=(x-r)^{N} g(x)+p \cdot h(x)$.
Proposed by Victor Wang

