

AoPS Community

Macedonian National Olympiad 2017

www.artofproblemsolving.com/community/c436246 by Stefan4024

Problem 1 Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for each natural integer n > 1 and for all $x, y \in \mathbb{N}$ the following holds:

$$f(x+y) = f(x) + f(y) + \sum_{k=1}^{n-1} \binom{n}{k} x^{n-k} y^k$$

Problem 2 Find all natural integers *n* such that $(n^3 + 39n - 2)n! + 17 \cdot 21^n + 5$ is a square.

Problem 3 Let $x, y, z \in \mathbb{R}$ such that xyz = 1. Prove that:

$$\left(x^4 + \frac{z^2}{y^2}\right)\left(y^4 + \frac{x^2}{z^2}\right)\left(z^4 + \frac{y^2}{x^2}\right) \ge \left(\frac{x^2}{y} + 1\right)\left(\frac{y^2}{z} + 1\right)\left(\frac{z^2}{x} + 1\right).$$

Problem 4 Let *O* be the circumcenter of the acute triangle *ABC* (AB < AC). Let A_1 and *P* be the feet of the perpendicular lines drawn from *A* and *O* to *BC*, respectively. The lines *BO* and *CO* intersect AA_1 in *D* and *E*, respectively. Let *F* be the second intersection point of $\odot ABD$ and $\odot ACE$. Prove that the angle bisector od $\angle FAP$ passes through the incenter of $\triangle ABC$.

Problem 5 Let $n > 1 \in \mathbb{N}$ and $a_1, a_2, ..., a_n$ be a sequence of n natural integers. Let:

$$b_1 = \left[\frac{a_2 + \dots + a_n}{n-1}\right], b_i = \left[\frac{a_1 + \dots + a_{i-1} + a_{i+1} + \dots + a_n}{n-1}\right], b_n = \left[\frac{a_1 + \dots + a_{n-1}}{n-1}\right]$$

Define a mapping *f* by $f(a_1, a_2, \dots a_n) = (b_1, b_2, \dots, b_n)$.

a) Let $g : \mathbb{N} \to \mathbb{N}$ be a function such that g(1) is the number of different elements in $f(a_1, a_2, \dots a_n)$ and g(m) is the number od different elements in $f^m(a_1, a_2, \dots a_n) = f(f^{m-1}(a_1, a_2, \dots a_n)); m > 1$. Prove that $\exists k_0 \in \mathbb{N}$ s.t. for $m \ge k_0$ the function g(m) is periodic.

b) Prove that $\sum_{m=1}^{k} \frac{g(m)}{m(m+1)} < C$ for all $k \in \mathbb{N}$, where C is a function that doesn't depend on k.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.