AoPS Community

IMC 1997
www.artofproblemsolving.com/community/c4370
by Peter, grobber

Day 1

1 Let $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive reals with $\lim _{n \rightarrow+\infty} \epsilon_{n}=0$. Find

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\epsilon_{n}\right)
$$

2 Let a_{n} be a sequence of reals. Suppose $\sum a_{n}$ converges. Do these sums converge aswell?
(a) $a_{1}+a_{2}+\left(a_{4}+a_{3}\right)+\left(a_{8}+\ldots+a_{5}\right)+\left(a_{16}+\ldots+a_{9}\right)+\ldots$
(b) $a_{1}+a_{2}+\left(a_{3}\right)+\left(a_{4}\right)+\left(a_{5}+a_{7}\right)+\left(a_{6}+a_{8}\right)+\left(a_{9}+a_{11}+a_{13}+a_{15}\right)+\left(a_{10}+a_{12}+a_{14}+a_{16}\right)+\left(a_{17}+\right.$

3 Let $A, B \in \mathbb{R}^{n \times n}$ with $A^{2}+B^{2}=A B$. Prove that if $B A-A B$ is invertible then $3 \mid n$.
4 Let α be a real number, $1<\alpha<2$.
(a) Show that α can uniquely be represented as the infinte product

$$
\alpha=\left(1+\frac{1}{n_{1}}\right)\left(1+\frac{1}{n_{2}}\right) \cdots
$$

with n_{i} positive integers satisfying $n_{i}^{2} \leq n_{i+1}$.
(b) Show that $\alpha \in \mathbb{Q}$ iff from some k onwards we have $n_{k+1}=n_{k}^{2}$.
$5 \quad$ For postive integer n consider the hyperplane

$$
R_{0}^{n}=x=\left(x_{1} x_{2} \ldots x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}=0
$$

and the lattice

$$
Z_{0}^{n}=\left\{y \in R_{0}^{n}:\left(\forall i: y_{i} \in \mathbb{N}\right)\right\}
$$

Define the quasi-norm in \mathbb{R}^{n} by $\|x\|_{p}=\sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}$ if $0<p<\infty$ and $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.
(a) If $x \in R_{0}^{n}$ so that $\max x_{i}-\min x_{i} \leq 1$ then prove that $\forall p \in[1, \infty], \forall y \in Z_{0}^{n}$ we have $\|x\|_{p} \leq\|x+y\|_{p}$
(b) Prove that for every $p \in] 0,1\left[\right.$, there exist $n \in \mathbb{N}, x \in R_{0}^{n}, y \in Z_{0}^{n}$ with $\max x_{i}-\min x_{i} \leq 1$ and $\|x\|_{p}>\|x+y\|_{p}$
$6 \quad$ Suppose F is a family of finite subsets of \mathbb{N} and for any 2 sets $A, B \in F$ we have $A \cap B \neq \emptyset$.
(a) Is it true that there is a finite subset Y of \mathbb{N} such that for any $A, B \in F$ we have $A \cap B \cap Y \neq \emptyset$? (b) Is the above true if we assume that all members of F have the same size?

Day 2

1 Let $f \in C^{3}(\mathbb{R})$ nonnegative function with $f(0)=f^{\prime}(0)=0, f^{\prime \prime}(0)>0$. Define $g(x)$ as follows:

$$
\left\{\begin{array}{ccc}
g(x)=\left(\frac{\sqrt{f(x)}}{f^{\prime}(x)}\right)^{\prime} & \text { for } & x \neq 0 \\
g(x)=0 & \text { for } & x=0
\end{array}\right.
$$

(a) Show that g is bounded in some neighbourhood of 0 .
(b) Is the above true for $f \in C^{2}(\mathbb{R})$?

2 Let $M \in G L_{2 n}(K)$, represented in block form as

$$
M=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right], M^{-1}=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]
$$

Show that $\operatorname{det} M \cdot \operatorname{det} H=\operatorname{det} A$.
3 Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin (\log n)}{n^{\alpha}}$ converges iff $\alpha>0$.
$4 \quad$ (a) Let $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ be a linear mapping. Prove that $\exists!C \in \mathbb{R}^{n \times n}$ such that $f(A)=\operatorname{Tr}(A C), \forall A \in$ $\mathbb{R}^{n \times n}$.
(b) Suppose in addtion that $\forall A, B \in \mathbb{R}^{n \times n}: f(A B)=f(B A)$. Prove that $\exists \lambda \in \mathbb{R}: f(A)=$ $\lambda \operatorname{Tr}(A)$
$5 \quad$ Let X be an arbitrary set and f a bijection from X to X. Show that there exist bijections g, g^{\prime} : $X \rightarrow X$ s.t. $f=g \circ g^{\prime}, g \circ g=g^{\prime} \circ g^{\prime}=1_{X}$.

6 Let $f:[0,1] \rightarrow \mathbb{R}$ continuous. We say that f crosses the axis at x if $f(x)=0$ but $\exists y, z \in$ $[x-\epsilon, x+\epsilon]: f(y)<0<f(z)$ for any ϵ.
(a) Give an example of a function that crosses the axis infinitely often.
(b) Can a continuous function cross the axis uncountably often?

