

AoPS Community

IMC 1998

www.artofproblemsolving.com/community/c4371 by Tintarn, Peter, sqrtX

-	Day 1
1	Let <i>V</i> be a 10-dimensional real vector space and U_1, U_2 two linear subspaces such that $U_1 \subseteq U_2, \dim U_1 = 3, \dim U_2 = 6$. Let ε be the set of all linear maps $T : V \to V$ which have $T(U_1) \subseteq U_1, T(U_2) \subseteq U_2$. Calculate the dimension of ε . (again, all as real vector spaces)
2	Consider the following statement: for any permutation $\pi_1 \neq \mathbb{I}$ of $\{1, 2,, n\}$ there is a permutation π_2 such that any permutation on these numbers can be obtained by a finite composition of π_1 and π_2 .
	(a) Prove the statement for $n = 3$ and $n = 5$. (b) Disprove the statement for $n = 4$.
3	Let $f(x) = 2x(1-x), x \in \mathbb{R}$ and denote $f_n = f \circ f \circ \dots \circ f$, <i>n</i> times. (a) Find $\lim_{n\to\infty} \int_0^1 f_n(x) dx$. (b) Now compute $\int_0^1 f_n(x) dx$.
4	The function $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable and satisfies $f(0) = 2$, $f'(0) = -2$, $f(1) = 1$. Prove that there is a $\xi \in]0, 1[$ for which we have $f(\xi) \cdot f'(\xi) + f''(\xi) = 0$.
5	Let <i>P</i> be a polynomial of degree <i>n</i> with only real zeros and real coefficients. Prove that for every real <i>x</i> we have $(n-1)(P'(x))^2 \ge nP(x)P''(x)$. When does equality occur?
6	Let $f: [0,1] \to \mathbb{R}$ be a continuous function satisfying $xf(y) + yf(x) \le 1$ for every $x, y \in [0,1]$. (a) Show that $\int_0^1 f(x) dx \le \frac{\pi}{4}$. (b) Find such a function for which equality occurs.
-	Day 2
1	<i>V</i> is a real vector space and $f, f_i : V \to \mathbb{R}$ are linear for $i = 1, 2,, k$. Also <i>f</i> is zero at all points for which all of f_i are zero. Show that <i>f</i> is a linear combination of the f_i .
2	S ist the set of all cubic polynomials f with $ f(\pm 1) \le 1$ and $ f(\pm \frac{1}{2}) \le 1$. Find $\sup_{f \in S} \max_{-1 \le x \le 1} f''(x) $ and all members of f which give equality.

1998 IMC

AoPS Community

3	Given $0 < c < 1$, we define $f(x) = \begin{cases} \frac{x}{c} & x \in [0, c] \\ \frac{1-x}{1-c} & x \in [c, 1] \end{cases}$ Let $f^n(x) = f(f(f(x)))$. Show that for each positive integer n , f^n has a non-zero finite number of fixed points which aren't fixed points of f^k for $k < n$.
4	Let $S_n = \{1, 2,, n\}$. How many functions $f : S_n \to S_n$ satisfy $f(k) \le f(k+1)$ and $f(k) = f(f(k+1))$ for $k < n$?
5	S is a family of balls in \mathbb{R}^n ($n > 1$) such that the intersection of any two contains at most one point. Show that the set of points belonging to at least two members of S is countable.
6	$f: (0,1) \rightarrow [0,\infty)$ is zero except at a countable set of points a_1, a_2, a_3, \dots . Let $b_n = f(a_n)$. Show that if $\sum b_n$ converges, then f is differentiable at at least one point. Show that for any sequence b_n of non-negative reals with $\sum b_n = \infty$, we can find a sequence a_n such that the function f defined as above is nowhere differentiable.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.

1998 IMC