AoPS Community

IMC 1998

www.artofproblemsolving.com/community/c4371
by Tintarn, Peter, sqrtX

- Day 1

1 Let V be a 10-dimensional real vector space and U_{1}, U_{2} two linear subspaces such that $U_{1} \subseteq$ $U_{2}, \operatorname{dim} U_{1}=3, \operatorname{dim} U_{2}=6$. Let ε be the set of all linear maps $T: V \rightarrow V$ which have $T\left(U_{1}\right) \subseteq$ $U_{1}, T\left(U_{2}\right) \subseteq U_{2}$. Calculate the dimension of ε. (again, all as real vector spaces)

2 Consider the following statement: for any permutation $\pi_{1} \neq \mathbb{I}$ of $\{1,2, \ldots, n\}$ there is a permutation π_{2} such that any permutation on these numbers can be obtained by a finite compostion of π_{1} and π_{2}.
(a) Prove the statement for $n=3$ and $n=5$.
(b) Disprove the statement for $n=4$.

3 Let $f(x)=2 x(1-x), x \in \mathbb{R}$ and denote $f_{n}=f \circ f \circ \ldots \circ f$, n times.
(a) Find $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.
(b) Now compute $\int_{0}^{1} f_{n}(x) d x$.
$4 \quad$ The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable and satisfies $f(0)=2, f^{\prime}(0)=-2, f(1)=1$. Prove that there is a $\xi \in] 0,1\left[\right.$ for which we have $f(\xi) \cdot f^{\prime}(\xi)+f^{\prime \prime}(\xi)=0$.

5 Let P be a polynomial of degree n with only real zeros and real coefficients.
Prove that for every real x we have $(n-1)\left(P^{\prime}(x)\right)^{2} \geq n P(x) P^{\prime \prime}(x)$. When does equality occur?
$6 \quad$ Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function satisfying $x f(y)+y f(x) \leq 1$ for every $x, y \in[0,1]$.
(a) Show that $\int_{0}^{1} f(x) d x \leq \frac{\pi}{4}$.
(b) Find such a funtion for which equality occurs.

- Day 2
$1 \quad V$ is a real vector space and $f, f_{i}: V \rightarrow \mathbb{R}$ are linear for $i=1,2, \ldots, k$. Also f is zero at all points for which all of f_{i} are zero. Show that f is a linear combination of the f_{i}.
$2 \quad S$ ist the set of all cubic polynomials f with $|f(\pm 1)| \leq 1$ and $\left|f\left(\pm \frac{1}{2}\right)\right| \leq 1$. Find $\sup _{f \in S} \max _{-1 \leq x \leq 1}\left|f^{\prime \prime}(x)\right|$ and all members of f which give equality.

3 Given $0<c<1$, we define $f(x)= \begin{cases}\frac{x}{c} & x \in[0, c] \\ \frac{1-x}{1-c} & x \in[c, 1]\end{cases}$
Let $f^{n}(x)=f(f(\ldots f(x)))$. Show that for each positive integer n, f^{n} has a non-zero finite nunber of fixed points which aren't fixed points of f^{k} for $k<n$.

4 Let $S_{n}=\{1,2, \ldots, n\}$. How many functions $f: S_{n} \rightarrow S_{n}$ satisfy $f(k) \leq f(k+1)$ and $f(k)=$ $f(f(k+1))$ for $k<n$?
$5 \quad S$ is a family of balls in $\mathbb{R}^{n}(n>1)$ such that the intersection of any two contains at most one point. Show that the set of points belonging to at least two members of S is countable.
$6 \quad f:(0,1) \rightarrow[0, \infty)$ is zero except at a countable set of points $a_{1}, a_{2}, a_{3}, \ldots$. Let $b_{n}=f\left(a_{n}\right)$. Show that if $\sum b_{n}$ converges, then f is differentiable at at least one point. Show that for any sequence b_{n} of non-negative reals with $\sum b_{n}=\infty$, we can find a sequence a_{n} such that the function f defined as above is nowhere differentiable.

