Art of Problem Solving

AoPS Community

IMC 1999

www.artofproblemsolving.com/community/c4372
by Peter, sqrtX

Day 1

1 a) Show that $\forall n \in \mathbb{N}_{0}, \exists A \in \mathbb{R}^{n \times n}: A^{3}=A+I$.
b) Show that $\operatorname{det}(A)>0, \forall A$ fulfilling the above condition.

2 Does there exist a bijective map $f: \mathbb{N} \rightarrow \mathbb{N}$ so that $\sum_{n=1}^{\infty} \frac{f(n)}{n^{2}}$ is finite?
3 Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfils $\left|\sum_{k=1}^{n} 3^{k}(f(x+k y)-f(x-k y))\right| \leq 1$ for all $n \in \mathbb{N}, x, y \in \mathbb{R}$. Prove that f is a constant function.
$4 \quad$ Find all strictly monotonic functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$for which $f\left(\frac{x^{2}}{f(x)}\right)=x$ for all x.
5 Suppose that $2 n$ points of an $n \times n$ grid are marked. Show that for some $k>1$ one can select $2 k$ distinct marked points, say $a_{1}, \ldots, a_{2 k}$, such that $a_{2 i-1}$ and $a_{2 i}$ are in the same row, $a_{2 i}$ and $a_{2 i+1}$ are in the same column, $\forall i$, indices taken $\bmod 2 n$.

6 (a) Let $p>1$ a real number. Find a real constant c_{p} for which the following statement holds:
If $f:[-1,1] \rightarrow \mathbb{R}$ is a continuously differentiable function with $f(1)>f(-1)$ and $\left|f^{\prime}(y)\right| \leq$ $1 \forall y \in[-1,1]$, then $\exists x \in[-1,1]: f^{\prime}(x)>0$ so that $\forall y \in[-1,1]:|f(y)-f(x)| \leq c_{p} \sqrt[p]{f^{\prime}(x)}|y-x|$.
(b) What if $p=1$?

Day 2

1 Let R be a ring where $\forall a \in R: a^{2}=0$. Prove that $a b c+a b c=0$ for all $a, b, c \in R$.
2 We roll a regular 6-sided dice n times. What is the probabilty that the total number of eyes rolled is a multiple of 5 ?

3 Let $x_{i} \geq-1$ and $\sum_{i=1}^{n} x_{i}^{3}=0$. Prove $\sum_{i=1}^{n} x_{i} \leq \frac{n}{3}$.
4 Prove that there's no function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(x)^{2} \geq f(x+y)(f(x)+y)$ for all $x, y>0$.
$5 \quad$ Let S be the set of words made from the letters a, b and c. The equivalence relation \sim on S satisfies

$$
\begin{gathered}
u u \sim u \\
u \sim v \Rightarrow u w \sim v w \text { and } w u \sim w v
\end{gathered}
$$

for all words u, v and w. Prove that every word in S is equivalent to a word of length ≤ 8.
6 Let A be a subset of $\mathbb{Z} / n \mathbb{Z}$ with at most $\frac{\ln (n)}{100}$ elements.
Define $f(r)=\sum_{s \in A} e^{\frac{2 \pi i r s}{n}}$. Show that for some $r \neq 0$ we have $|f(r)| \geq \frac{|A|}{2}$.

