Art of Problem Solving

AoPS Community

IMC 2000

www.artofproblemsolving.com/community/c4373
by Fermat -Euler, alekk, Peter, Valentin Vornicu, sqrtX

Day 1

1 Does every monotone increasing function $f:[0,1] \rightarrow[0,1]$ have a fixed point? What about every monotone decreasing function?

2 Let $p(x)=x^{5}+x$ and $q(x)=x^{5}+x^{2}$, Find al pairs $(w, z) \in \mathbb{C} \times \mathbb{C}, w \neq z$ for which $p(w)=$ $p(z), q(w)=q(z)$.

3 Let $A, B \in \mathbb{C}^{n \times n}$ with $\rho(A B-B A)=1$. Show that $(A B-B A)^{2}=0$.
4 Let $\left(x_{i}\right)$ be a decreasing sequence of positive reals, then show that:
(a) for every positive integer n we have $\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \leq \sum_{i=1}^{n} \frac{x_{i}}{\sqrt{i}}$.
(b) there is a constant C for which we have $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \sqrt{\sum_{i=k}^{\infty} x_{i}^{2}} \leq C \sum_{i=1}^{\infty} x_{i}$.
$5 \quad$ Let R be a ring of characteristic zero. Let $e, f, g \in R$ be idempotent elements (an element x is called idempotent if $x^{2}=x$) satisfying $e+f+g=0$. Show that $e=f=g=0$.

6 Let $f: \mathbb{R} \rightarrow] 0,+\infty$ [be an increasing differentiable function with $\lim _{x \rightarrow+\infty} f(x)=+\infty$ and f^{\prime} is bounded, and let $F(x)=\int_{0}^{x} f(t) d t$.
Define the sequence $\left(a_{n}\right)$ recursively by $a_{0}=1, a_{n+1}=a_{n}+\frac{1}{f\left(a_{n}\right)}$
Define the sequence $\left(b_{n}\right)$ by $b_{n}=F^{-1}(n)$.
Prove that $\lim _{x \rightarrow+\infty}\left(a_{n}-b_{n}\right)=0$.

Day 2

1 Show that a square may be partitioned into n smaller squares for sufficiently large n. Show that for some constant $N(d)$, a d-dimensional cube can be partitioned into n smaller cubes if $n \geq N(d)$.

2 Let f be continuous and nowhere monotone on [0, 1]. Show that the set of points on which f obtains a local minimum is dense.

3 Let $p(z)$ be a polynomial of degree $n>0$ with complex coefficients. Prove that there are at least $n+1$ complex numbers z for which $p(z) \in\{0,1\}$.

4 Let $O A B C$ be a tetrahedon with $\angle B O C=\alpha, \angle C O A=\beta$ and $\angle A O B=\gamma$. The angle between the faces $O A B$ and $O A C$ is σ and the angle between the faces $O A B$ and $O B C$ is ρ. Show that $\gamma>\beta \cos \sigma+\alpha \cos \rho$.
$5 \quad$ Find all functions $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$for which we have for all $x, y \in \mathbb{R}^{+}$that $f(x) f(y f(x))=f(x+y)$.
$6 \quad$ Let A be a real $n \times n$ Matrix and define $e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$
Prove or disprove that for any real polynomial $P(x)$ and any real matrices $A, B, P\left(e^{A B}\right)$ is nilpotent if and only if $P\left(e^{B A}\right)$ is nilpotent.

