

AoPS Community

IMC 2000

www.artofproblemsolving.com/community/c4373

by Fermat -Euler, alekk, Peter, Valentin Vornicu, sqrtX

Day 1	
1	Does every monotone increasing function $f : [0, 1] \rightarrow [0, 1]$ have a fixed point? What about every monotone decreasing function?
2	Let $p(x) = x^5 + x$ and $q(x) = x^5 + x^2$, Find al pairs $(w, z) \in \mathbb{C} \times \mathbb{C}$, $w \neq z$ for which $p(w) = p(z), q(w) = q(z)$.
3	Let $A, B \in \mathbb{C}^{n \times n}$ with $\rho(AB - BA) = 1$. Show that $(AB - BA)^2 = 0$.
4	Let (x_i) be a decreasing sequence of positive reals, then show that:
	(a) for every positive integer n we have $\sqrt{\sum_{i=1}^n x_i^2} \le \sum_{i=1}^n rac{x_i}{\sqrt{i}}$.
	(b) there is a constant C for which we have $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \sqrt{\sum_{i=k}^{\infty} x_i^2} \le C \sum_{i=1}^{\infty} x_i$.
5	Let <i>R</i> be a ring of characteristic zero. Let $e, f, g \in R$ be idempotent elements (an element <i>x</i> is called idempotent if $x^2 = x$) satisfying $e + f + g = 0$. Show that $e = f = g = 0$.
6	Let $f : \mathbb{R} \to]0, +\infty[$ be an increasing differentiable function with $\lim_{x\to+\infty} f(x) = +\infty$ and f' is bounded, and let $F(x) = \int_0^x f(t)dt$. Define the sequence (a_n) recursively by $a_0 = 1, a_{n+1} = a_n + \frac{1}{f(a_n)}$ Define the sequence (b_n) by $b_n = F^{-1}(n)$. Prove that $\lim_{x\to+\infty} (a_n - b_n) = 0$.
Day 2	
1	Show that a square may be partitioned into n smaller squares for sufficiently large n . Show that for some constant $N(d)$, a d -dimensional cube can be partitioned into n smaller cubes if $n \ge N(d)$.
2	Let f be continuous and nowhere monotone on $[0, 1]$. Show that the set of points on which f obtains a local minimum is dense.

3 Let p(z) be a polynomial of degree n > 0 with complex coefficients. Prove that there are at least n + 1 complex numbers z for which $p(z) \in \{0, 1\}$.

2000 IMC

AoPS Community

4	Let $OABC$ be a tetrahedon with $\angle BOC = \alpha, \angle COA = \beta$ and $\angle AOB = \gamma$. The angle between the faces OAB and OAC is σ and the angle between the faces OAB and OBC is ρ . Show that $\gamma > \beta \cos \sigma + \alpha \cos \rho$.
5	Find all functions $\mathbb{R}^+ \to \mathbb{R}^+$ for which we have for all $x, y \in \mathbb{R}^+$ that $f(x)f(yf(x)) = f(x+y)$.
6	Let A be a real $n \times n$ Matrix and define $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$ Prove or disprove that for any real polynomial $P(x)$ and any real matrices $A, B, P(e^{AB})$ is nilpotent if and only if $P(e^{BA})$ is nilpotent.

AoPS Online
AoPS Academy
AoPS

2000 IMC

Art of Problem Solving is an ACS WASC Accredited School.