

AoPS Community

2001 IMC

IMC 2001

www.artofproblemsolving.com/community/c4374 by Tintarn, Peter, sqrtX

-	Day 1
1	Let <i>n</i> be a positive integer. Consider an $n \times n$ matrix with entries $1, 2,, n^2$ written in order, starting at the top left and moving along each row in turn left-to-right. (e.g. for $n = 3$ we get $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$) We choose <i>n</i> entries of the matrix such that exactly one entry is chosen in each row and each column. What are the possible values of the sum of the selected entries?
2	Let r, s, t positive integers which are relatively prime and $a, b \in G$, G a commutative multiplicative group with unit element e , and $a^r = b^s = (ab)^t = e$. (a) Prove that $a = b = e$. (b) Does the same hold for a non-commutative group G ?
3	Find $\lim_{t \to 1^{-}} (1-t) \sum_{n=1}^{\infty} \frac{t^n}{1+t^n}$.
4	$p(x)$ is a polynomial of degree n with every coefficient 0 or ± 1 , and $p(x)$ is divisible by $(x-1)^k$ for some integer $k > 0$. q is a prime such that $\frac{q}{\ln q} < \frac{k}{\ln n+1}$. Show that the complex q -th roots of unity must be roots of $p(x)$.
5	Let A be an $n \times n$ complex matrix such that $A \neq \lambda I_n$ for all $\lambda \in \mathbb{C}$. Prove that A is similar to a matrix having at most one non-zero entry on the maindiagonal.
6	Suppose that the differentiable functions $a, b, f, g : \mathbb{R} \to \mathbb{R}$ satisfy
	$f(x) \ge 0, f'(x) \ge 0, g(x) \ge 0, g'(x) \ge 0$ for all $x \in \mathbb{R}$,
	$\lim_{x \to \infty} a(x) = A \ge 0, \lim_{x \to \infty} b(x) = B \ge 0, \lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty,$
	and $\frac{f'(x)}{g'(x)} + a(x)\frac{f(x)}{g(x)} = b(x).$
	Prove that $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \frac{B}{A+1}$.
-	Day 2

AoPS Community

1 Let $r, s \ge 1$ be integers and $a_0, a_1, ..., a_{r-1}, b_0, b_1, ..., b_{s-1}$ be real non-negative numbers such that $(a_0 + a_1x + a_2x^2 + ... + a_{r-1}x^{r-1} + x^r)(b_0 + b_1x + b_2x^2 + ... + b_{s-1}x^{s-1} + x^s) = 1 + x + x^2 + ... + x^{r+s-1} + x^{r+s}$.

Prove that each a_i and each b_j equals either 0 or 1.

2 Let $a_0 = \sqrt{2}, b_0 = 2, a_{n+1} = \sqrt{2 - \sqrt{4 - a_n^2}}, b_{n+1} = \frac{2b_n}{2 + \sqrt{4 + b_n^2}}$.

a) Prove that the sequences (a_n) and (b_n) are decreasing and converge to 0. b) Prove that the sequence $(2^n a_n)$ is increasing, the sequence $(2^n b_n)$ is decreasing and both converge to the same limit. c) Prove that there exists a positive constant *C* such that for all *n* the following inequality of the same limit.

c) Prove that there exists a positive constant C such that for all n the following inequality holds: $0 < b_n - a_n < \frac{C}{8^n}$.

- **3** Find the maximum number of points on a sphere of radius 1 in \mathbb{R}^n such that the distance between any two of these points is strictly greater than $\sqrt{2}$.
- 4 Let $A = (a_{k,l})_{k,l=1,...,n}$ be a complex $n \times n$ matrix such that for each $m \in \{1, 2, ..., n\}$ and $1 \leq j_1 < ... < j_m$ the determinant of the matrix $(a_{j_k,j_l})_{k,l=1,...,n}$ is zero. Prove that $A^n = 0$ and that there exists a permutation $\sigma \in S_n$ such that the matrix $(a_{\sigma(k),\sigma(l)})_{k,l=1,...,n}$ has all of its nonzero elements above the diagonal.
- **5** Prove that there is no function $f : \mathbb{R} \to \mathbb{R}$ with f(0) > 0, and such that

$$f(x+y) \ge f(x) + yf(f(x))$$
 for all $x, y \in \mathbb{R}$.

6 For each positive integer *n*, let $f_n(\vartheta) = \sin(\vartheta) \cdot \sin(2\vartheta) \cdot \sin(4\vartheta) \cdots \sin(2^n \vartheta)$. For each real ϑ and all *n*, prove that

$$|f_n(\vartheta)| \leq \frac{2}{\sqrt{3}} |f_n(\frac{\pi}{3})|$$

Act of Problem Solving is an ACS WASC Accredited School.