AoPS Community

IMC 2001

www.artofproblemsolving.com/community/c4374
by Tintarn, Peter, sqrtX

- Day 1

1 Let n be a positive integer. Consider an $n \times n$ matrix with entries $1,2, \ldots, n^{2}$ written in order, starting at the top left and moving along each row in turn left-to-right. (e.g. for $n=3$ we get $\left.\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\right)$
We choose n entries of the matrix such that exactly one entry is chosen in each row and each column. What are the possible values of the sum of the selected entries?

2 Let r, s, t positive integers which are relatively prime and $a, b \in G, G$ a commutative multiplicative group with unit element e, and $a^{r}=b^{s}=(a b)^{t}=e$.
(a) Prove that $a=b=e$.
(b) Does the same hold for a non-commutative group G ?

3 Find $\lim _{t \rightarrow 1^{-}}(1-t) \sum_{n=1}^{\infty} \frac{t^{n}}{1+t^{n}}$.
$4 \quad p(x)$ is a polynomial of degree n with every coefficient 0 or ± 1, and $p(x)$ is divisible by $(x-1)^{k}$ for some integer $k>0 . q$ is a prime such that $\frac{q}{\ln q}<\frac{k}{\ln n+1}$. Show that the complex q-th roots of unity must be roots of $p(x)$.
$5 \quad$ Let A be an $n \times n$ complex matrix such that $A \neq \lambda I_{n}$ for all $\lambda \in \mathbb{C}$. Prove that A is similar to a matrix having at most one non-zero entry on the maindiagonal.

6 Suppose that the differentiable functions $a, b, f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy

$$
\begin{gathered}
f(x) \geq 0, f^{\prime}(x) \geq 0, g(x) \geq 0, g^{\prime}(x) \geq 0 \text { for all } x \in \mathbb{R} \\
\lim _{x \rightarrow \infty} a(x)=A \geq 0, \lim _{x \rightarrow \infty} b(x)=B \geq 0, \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty
\end{gathered}
$$

and

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}+a(x) \frac{f(x)}{g(x)}=b(x) .
$$

Prove that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{B}{A+1}$.

[^0]1 Let $r, s \geq 1$ be integers and $a_{0}, a_{1}, \ldots, a_{r-1}, b_{0}, b_{1}, \ldots, b_{s-1}$ be real non-negative numbers such that $\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{r-1} x^{r-1}+x^{r}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{s-1} x^{s-1}+x^{s}\right)=1+x+x^{2}+$ $\ldots+x^{r+s-1}+x^{r+s}$.
Prove that each a_{i} and each b_{j} equals either 0 or 1.
2 Let $a_{0}=\sqrt{2}, b_{0}=2, a_{n+1}=\sqrt{2-\sqrt{4-a_{n}^{2}}}, b_{n+1}=\frac{2 b_{n}}{2+\sqrt{4+b_{n}^{2}}}$.
a) Prove that the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are decreasing and converge to 0 .
b) Prove that the sequence $\left(2^{n} a_{n}\right)$ is increasing, the sequence $\left(2^{n} b_{n}\right)$ is decreasing and both converge to the same limit.
c) Prove that there exists a positive constant C such that for all n the following inequality holds: $0<b_{n}-a_{n}<\frac{C}{8^{n}}$.

3 Find the maximum number of points on a sphere of radius 1 in \mathbb{R}^{n} such that the distance between any two of these points is strictly greater than $\sqrt{2}$.

4 Let $A=\left(a_{k, l}\right)_{k, l=1, \ldots, n}$ be a complex $n \times n$ matrix such that for each $m \in\{1,2, \ldots, n\}$ and $1 \leq j_{1}<\ldots<j_{m}$ the determinant of the matrix $\left(a_{j_{k}, j_{l}}\right)_{k, l=1, \ldots, n}$ is zero. Prove that $A^{n}=0$ and that there exists a permutation $\sigma \in S_{n}$ such that the matrix $\left(a_{\sigma(k), \sigma(l)}\right)_{k, l=1, \ldots, n}$ has all of its nonzero elements above the diagonal.

5 Prove that there is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)>0$, and such that

$$
f(x+y) \geq f(x)+y f(f(x)) \text { for all } x, y \in \mathbb{R}
$$

6 For each positive integer n, let $f_{n}(\vartheta)=\sin (\vartheta) \cdot \sin (2 \vartheta) \cdot \sin (4 \vartheta) \cdots \sin \left(2^{n} \vartheta\right)$.
For each real ϑ and all n, prove that

$$
\left|f_{n}(\vartheta)\right| \leq \frac{2}{\sqrt{3}}\left|f_{n}\left(\frac{\pi}{3}\right)\right|
$$

[^0]: - Day 2

