

AoPS Community

IMC 2002

www.artofproblemsolving.com/community/c4375 by Peter, sqrtX

Day 1

A standard parabola is the graph of a quadratic polynomial $y = x^2 + ax + b$ with leading 1 coefficient 1. Three standard parabolas with vertices V1, V2, V3 intersect pairwise at points A1, A2, A3. Let $A \mapsto s(A)$ be the reflection of the plane with respect to the x-axis. Prove that standard parabolas with vertices s(A1), s(A2), s(A3) intersect pairwise at the points s(V1), s(V2), s(V3).2 Does there exist a continuously differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that for every $x \in \mathbb{R}$ we have f(x) > 0 and f'(x) = f(f(x))? Let *n* be a positive integer and let $a_k = \frac{1}{\binom{n}{k}}, b_k = 2^{k-n}, (k = 1..n).$ 3 Show that $\sum_{k=1}^{n} \frac{a_k - b_k}{k} = 0.$ Let $f : [a, b] \to [a, b]$ be a continuous function and let $p \in [a, b]$. Define $p_0 = p$ and $p_{n+1} = f(p_n)$ 4 for $n = 0, 1, 2, \dots$ Suppose that the set $T_p = \{p_n : n = 0, 1, 2, \dots\}$ is closed, i.e., if $x \notin T_p$ then $\exists \delta > 0$ such that for all $x' \in T_p$ we have $|x' - x| \ge \delta$. Show that T_p has finitely many elements. 5 Prove or disprove the following statements: (a) There exists a monotone function $f: [0,1] \rightarrow [0,1]$ such that for each $y \in [0,1]$ the equation f(x) = y has uncountably many solutions x. (b) There exists a continuously differentiable function $f : [0,1] \rightarrow [0,1]$ such that for each $y \in [0,1]$ the equation f(x) = y has uncountably many solutions x. For an $n \times n$ matrix with real entries let $||M|| = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Mx||_2}{||x||_2}$, where $|| \cdot ||_2$ denotes the 6 Euclidean norm on \mathbb{R}^n . Assume that an $n \times n$ matrxi A with real entries satisfies $||A^k - A^{k-1}|| \le 1$ $\frac{1}{2002k}$ for all positive integers k. Prove that $||A^k|| \le 2002$ for all positive integers k. Day 2

AoPS Community

7 Compute the determinant of the $n \times n$ matrix $A = (a_{ij})_{ij}$,

$$a_{ij} = \begin{cases} (-1)^{|i-j|} & \text{if } i \neq j, \\ 2 & \text{if } i = j. \end{cases}$$

- 8 200 students participated in a math contest. They had 6 problems to solve. Each problem was correctly solved by at least 120 participants. Prove that there must be 2 participants such that every problem was solved by at least one of these two students.
- **9** For each $n \ge 1$ let

$$a_n = \sum_{k=0}^{\infty} \frac{k^n}{k!}, \ b_n = \sum_{k=0}^{\infty} (-1)^k \frac{k^n}{k!}.$$

Show that $a_n \cdot b_n$ is an integer.

- **10** Let OABC be a tetrahedon with $\angle BOC = \alpha$, $\angle COA = \beta$ and $\angle AOB = \gamma$. The angle between the faces OAB and OAC is σ and the angle between the faces OAB and OBC is ρ . Show that $\gamma > \beta \cos \sigma + \alpha \cos \rho$.
- 11 Let A be a complex $n \times n$ Matrix for n > 1. Let A^H be the conjugate transpose of A. Prove that $A \cdot A^H = I_n$ if and only if $A = S \cdot (S^H)^{-1}$ for some complex Matrix S.
- **12** Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function whose gradient ∇f exists at every point of \mathbb{R}^n and satisfies the condition

$$\exists L > 0 \ \forall x_1, x_2 \in \mathbb{R}^n : \ ||\nabla f(x_1) - \nabla f(x_2)|| \le L||x_1 - x_2||.$$

Prove that

$$\forall x_1, x_2 \in \mathbb{R}^n : ||\nabla f(x_1) - \nabla f(x_2)||^2 \le L \langle \nabla f(x_1) - \nabla f(x_2), x_1 - x_2 \rangle.$$

AoPS Online (AoPS Academy AoPS & CONSTRUCTION OF A CADEMY

Art of Problem Solving is an ACS WASC Accredited School.