Art of Problem Solving

AoPS Community

IMC 2002

www.artofproblemsolving.com/community/c4375
by Peter, sqrtX

Day 1

1 A standard parabola is the graph of a quadratic polynomial $y=x^{2}+a x+b$ with leading coëfficient 1. Three standard parabolas with vertices $V 1, V 2, V 3$ intersect pairwise at points $A 1, A 2, A 3$. Let $A \mapsto s(A)$ be the reflection of the plane with respect to the x-axis.

Prove that standard parabolas with vertices $s(A 1), s(A 2), s(A 3)$ intersect pairwise at the points $s(V 1), s(V 2), s(V 3)$.

2 Does there exist a continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $x \in \mathbb{R}$ we have $f(x)>0$ and $f^{\prime}(x)=f(f(x))$?

3 Let n be a positive integer and let $a_{k}=\frac{1}{\binom{n}{k}}, b_{k}=2^{k-n},(k=1 . . n)$.
Show that $\sum_{k=1}^{n} \frac{a_{k}-b_{k}}{k}=0$.
4 Let $f:[a, b] \rightarrow[a, b]$ be a continuous function and let $p \in[a, b]$. Define $p_{0}=p$ and $p_{n+1}=f\left(p_{n}\right)$ for $n=0,1,2, \ldots$. Suppose that the set $T_{p}=\left\{p_{n}: n=0,1,2, \ldots\right\}$ is closed, i.e., if $x \notin T_{p}$ then $\exists \delta>0$ such that for all $x^{\prime} \in T_{p}$ we have $\left|x^{\prime}-x\right| \geq \delta$.

Show that T_{p} has finitely many elements.
5 Prove or disprove the following statements:
(a) There exists a monotone function $f:[0,1] \rightarrow[0,1]$ such that for each $y \in[0,1]$ the equation $f(x)=y$ has uncountably many solutions x.
(b) There exists a continuously differentiable function $f:[0,1] \rightarrow[0,1]$ such that for each $y \in[0,1]$ the equation $f(x)=y$ has uncountably many solutions x.
$6 \quad$ For an $n \times n$ matrix with real entries let $\|M\|=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|M x\|_{2}}{\|x\|_{2}}$, where $\|\cdot\|_{2}$ denotes the Euclidean norm on \mathbb{R}^{n}. Assume that an $n \times n$ matrxi A with real entries satisfies $\left\|A^{k}-A^{k-1}\right\| \leq$ $\frac{1}{2002 k}$ for all positive integers k. Prove that $\left\|A^{k}\right\| \leq 2002$ for all positive integers k.

Day 2

7 Compute the determinant of the $n \times n$ matrix $A=\left(a_{i j}\right)_{i j}$,

$$
a_{i j}= \begin{cases}(-1)^{|i-j|} & \text { if } i \neq j, \\ 2 & \text { if } i=j\end{cases}
$$

8200 students participated in a math contest. They had 6 problems to solve. Each problem was correctly solved by at least 120 participants. Prove that there must be 2 participants such that every problem was solved by at least one of these two students.
$9 \quad$ For each $n \geq 1$ let

$$
a_{n}=\sum_{k=0}^{\infty} \frac{k^{n}}{k!}, \quad b_{n}=\sum_{k=0}^{\infty}(-1)^{k} \frac{k^{n}}{k!} .
$$

Show that $a_{n} \cdot b_{n}$ is an integer.
10 Let $O A B C$ be a tetrahedon with $\angle B O C=\alpha, \angle C O A=\beta$ and $\angle A O B=\gamma$. The angle between the faces $O A B$ and $O A C$ is σ and the angle between the faces $O A B$ and $O B C$ is ρ.
Show that $\gamma>\beta \cos \sigma+\alpha \cos \rho$.
11 Let A be a complex $n \times n$ Matrix for $n>1$. Let A^{H} be the conjugate transpose of A. Prove that $A \cdot A^{H}=I_{n}$ if and only if $A=S \cdot\left(S^{H}\right)^{-1}$ for some complex Matrix S.

12 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function whose gradient ∇f exists at every point of \mathbb{R}^{n} and satisfies the condition

$$
\exists L>0 \forall x_{1}, x_{2} \in \mathbb{R}^{n}:\left\|\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\| .
$$

Prove that

$$
\forall x_{1}, x_{2} \in \mathbb{R}^{n}:\left\|\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right\|^{2} \leq L\left\langle\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right), x_{1}-x_{2}\right\rangle
$$

