Art of Problem Solving

AoPS Community

IMC 2003

www.artofproblemsolving.com/community/c4376
by Peter, sqrtX, caugust

Day 1

1 (a) Let a_{1}, a_{2}, \ldots be a sequenceof reals with $a_{1}=1$ and $a_{n+1}>\frac{3}{2} a_{n}$ for all n. Prove that $\lim _{n \rightarrow \infty} \frac{a_{n}}{\left(\frac{3}{2}\right)^{n-1}}$ exists. (finite or infinite)
(b) Prove that for all $\alpha>1$ there is a sequence a_{1}, a_{2}, \ldots with the same properties such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{\left(\frac{3}{2}\right)^{n-1}}=\alpha$

2 Let $a_{1}, a_{2}, \ldots, a_{51}$ be non-zero elements of a field of characteristic p. We simultaneously replace each element with the sum of the 50 remaining ones. In this way we get a sequence b_{1}, \ldots, b_{51}. If this new sequence is a permutation of the original one, find all possible values of p.

3 Let $A \in \mathbb{R}^{n \times n}$ such that $3 A^{3}=A^{2}+A+I$. Show that the sequence A^{k} converges to an idempotent matrix. (idempotent: $B^{2}=B$)

4 Determine the set of all pairs (a, b) of positive integers for which the set of positive integers can be decomposed into 2 sets A and B so that $a \cdot A=b \cdot B$.
$5 \quad$ Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function and let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of functions defined by $f_{0}(x)=g(x)$ and

$$
f_{n+1}(x)=\frac{1}{x} \int_{0}^{x} f_{n}(t) d t
$$

Determine $\lim _{n \rightarrow \infty} f_{n}(x)$ for every $x \in(0,1]$.
6 Let $p=\sum_{k=0}^{n} a_{k} X^{k} \in R[X]$ a polynomial such that all his roots lie in the half plane $\{z \in$ $C \mid \operatorname{Re}(z)<0\}$. Prove that $a_{k} a_{k+3}<a_{k+1} a_{k+2}$, for every $\mathrm{k}=0,1,2 \ldots, \mathrm{n}-3$.

Day 2

1 Let $A, B \in \mathbb{R}^{n \times n}$ such that $A B+B+A=0$. Prove that $A B=B A$.
2 Evaluate $\lim _{x \rightarrow 0^{+}} \int_{x}^{2 x} \frac{\sin ^{m}(t)}{t^{n}} d t .(m, n \in \mathbb{N})$
$3 \quad$ Let A be a closed subset of \mathbb{R}^{n} and let B be the set of all those points $b \in \mathbb{R}^{n}$ for which there exists exactly one point $a_{0} \in A$ such that $\left|a_{0}-b\right|=\inf _{a \in A}|a-b|$. Prove that B is dense in \mathbb{R}^{n}; that is, the closure of B is \mathbb{R}^{n}

4 Find all the positive integers n for which there exists a Family \mathcal{F} of three-element subsets of $S=\{1,2, \ldots, n\}$ satisfying
(i) for any two different elements $a, b \in S$ there exists exactly one $A \in \mathcal{F}$ containing both a and b;
(ii) if a, b, c, x, y, z are elements of S such that $\{a, b, x\},\{a, c, y\},\{b, c, z\} \in \mathcal{F}$, then $\{x, y, z\} \in \mathcal{F}$.

5 a) Show that for each function $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}$, there exists a function $g: \mathbb{Q} \rightarrow \mathbb{R}$ with $f(x, y) \leq g(x)+g(y)$ for all $x, y \in \mathbb{Q}$.
b) Find a function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, for which there is no function $g: \mathbb{Q} \rightarrow \mathbb{R}$ such that $f(x, y) \leq$ $g(x)+g(y)$ for all $x, y \in \mathbb{R}$.

6 Let $\left(a_{n}\right)$ be the sequence defined by $a_{0}=1, a_{n+1}=\sum_{k=0}^{n} \frac{a_{k}}{n-k+2}$.
Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{a_{k}}{2^{k}}
$$

if it exists.

