

AoPS Community

IMC 2003

www.artofproblemsolving.com/community/c4376 by Peter, sqrtX, caugust

1	(a) Let $a_1, a_2,$ be a sequence of reals with $a_1 = 1$ and $a_{n+1} > \frac{3}{2}a_n$ for all n . Prove that $\lim_{n\to\infty} \frac{a_n}{\left(\frac{3}{2}\right)^{n-1}}$ exists. (finite or infinite)
	(b) Prove that for all $\alpha > 1$ there is a sequence $a_1, a_2,$ with the same properties such that $\lim_{n\to\infty} \frac{a_n}{\left(\frac{3}{2}\right)^{n-1}} = \alpha$
2	Let $a_1, a_2,, a_{51}$ be non-zero elements of a field of characteristic p . We simultaneously replace each element with the sum of the 50 remaining ones. In this way we get a sequence $b_1,, b_{51}$. If this new sequence is a permutation of the original one, find all possible values of p .
3	Let $A \in \mathbb{R}^{n \times n}$ such that $3A^3 = A^2 + A + I$. Show that the sequence A^k converges to an idempotent matrix. (idempotent: $B^2 = B$)
4	Determine the set of all pairs (a,b) of positive integers for which the set of positive integers can be decomposed into 2 sets A and B so that $a \cdot A = b \cdot B$.
5	Let $g: [0,1] \to \mathbb{R}$ be a continuous function and let $f_n: [0,1] \to \mathbb{R}$ be a sequence of functions defined by $f_0(x) = g(x)$ and
	$f_{n+1}(x) = \frac{1}{x} \int_0^x f_n(t) dt.$
	Determine $\lim_{n\to\infty} f_n(x)$ for every $x \in (0,1]$.
6	Let $p = \sum_{k=0}^{n} a_k X^k \in R[X]$ a polynomial such that all his roots lie in the half plane $\{z \in X\}$
	$C Re(z) < 0$. Prove that $a_k a_{k+3} < a_{k+1} a_{k+2}$, for every k=0,1,2,n-3.
Day 2	
1	Let $A, B \in \mathbb{R}^{n \times n}$ such that $AB + B + A = 0$. Prove that $AB = BA$.
2	Evaluate $\lim_{x \to 0^+} \int_x^{2x} \frac{\sin^m(t)}{t^n} dt$. ($m, n \in \mathbb{N}$)

2003 IMC

AoPS Community

3

- Let *A* be a closed subset of \mathbb{R}^n and let *B* be the set of all those points $b \in \mathbb{R}^n$ for which there exists exactly one point $a_0 \in A$ such that $|a_0 b| = \inf_{a \in A} |a b|$. Prove that *B* is dense in \mathbb{R}^n ; that is, the closure of *B* is \mathbb{R}^n
- **4** Find all the positive integers *n* for which there exists a Family \mathcal{F} of three-element subsets of $S = \{1, 2, ..., n\}$ satisfying

(i) for any two different elements $a, b \in S$ there exists exactly one $A \in \mathcal{F}$ containing both a and b;

(ii) if a, b, c, x, y, z are elements of S such that $\{a, b, x\}, \{a, c, y\}, \{b, c, z\} \in \mathcal{F}$, then $\{x, y, z\} \in \mathcal{F}$.

5 a) Show that for each function $f : \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$, there exists a function $g : \mathbb{Q} \to \mathbb{R}$ with $f(x,y) \leq g(x) + g(y)$ for all $x, y \in \mathbb{Q}$. b) Find a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, for which there is no function $g : \mathbb{Q} \to \mathbb{R}$ such that $f(x,y) \leq g(x) + g(y)$ for all $x, y \in \mathbb{R}$.

6 Let (a_n) be the sequence defined by $a_0 = 1$, $a_{n+1} = \sum_{k=0}^n \frac{a_k}{n-k+2}$. Find the limit

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{a_k}{2^k}$$

if it exists.

AoPS Online AoPS Academy AoPS & Ao

© 2021 AoPS Incorporated 2

2003 IMC