

AoPS Community

IMC 2004

www.artofproblemsolving.com/community/c4377 by Valentin Vornicu, cyshine, grobber

Day 1

1	Let <i>S</i> be an infinite set of real numbers such that $ x_1 + x_2 + \cdots + x_n \le 1$ for all finite subsets $\{x_1, x_2, \ldots, x_n\} \subset S$. Show that <i>S</i> is countable.
2	Let $f_1(x) = x^2 - 1$, and for each positive integer $n \ge 2$ define $f_n(x) = f_{n-1}(f_1(x))$. How many distinct real roots does the polynomial f_{2004} have?
3	Let A_n be the set of all the sums $\sum_{k=1}^n \arcsin x_k$, where $n \ge 2$, $x_k \in [0, 1]$, and $\sum_{k=1}^n x_k = 1$. a) Prove that A_n is an interval.
	b) Let a_n be the length of the interval A_n . Compute $\lim_{n \to \infty} a_n$.
4	Suppose $n \ge 4$ and let <i>S</i> be a finite set of points in the space (\mathbb{R}^3), no four of which lie in a plane. Assume that the points in <i>S</i> can be colored with red and blue such that any sphere which intersects <i>S</i> in at least 4 points has the property that exactly half of the points in the intersection of <i>S</i> and the sphere are blue. Prove that all the points of <i>S</i> lie on a sphere.
5	Let S be a set of $\binom{2n}{n} + 1$ real numbers, where n is an positive integer. Prove that there exists a monotone sequence $\{a_i\}_{1 \le i \le n+2} \subset S$ such that
	$ x_{i+1} - x_1 \ge 2 x_i - x_1 ,$
	for all $i = 2, 3, \dots, n+1$.

6 For every complex number *z* different from 0 and 1 we define the following function

$$f(z) := \sum \frac{1}{\log^4 z}$$

where the sum is over all branches of the complex logarithm.

a) Prove that there are two polynomials P and Q such that $f(z) = \frac{P(z)}{Q(z)}$ for all $z \in \mathbb{C} - \{0, 1\}$.

AoPS Community

b) Prove that for all $z \in \mathbb{C} - \{0, 1\}$ we have

$$f(z) = \frac{z^3 + 4z^2 + z}{6(z-1)^4}.$$

Day 2

1 Let A be a real 4×2 matrix and B be a real 2×4 matrix such that

$$AB = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

Find BA.

2 Let $f, g : [a, b] \to [0, \infty)$ be two continuous and non-decreasing functions such that each $x \in [a, b]$ we have

$$\int_{a}^{x} \sqrt{f(t)} dt \leq \int_{a}^{x} \sqrt{g(t)} dt \text{ and } \int_{a}^{b} \sqrt{f(t)} dt = \int_{a}^{b} \sqrt{g(t)} dt.$$

Prove that

$$\int_{a}^{b} \sqrt{1+f(t)} \ dt \ge \int_{a}^{b} \sqrt{1+g(t)} \ dt$$

- **3** Let *D* be the closed unit disk in the plane, and let $z_1, z_2, ..., z_n$ be fixed points in *D*. Prove that there exists a point *z* in *D* such that the sum of the distances from *z* to each of the *n* points is greater or equal than *n*.
- **4** For $n \ge 1$ let M be an $n \times n$ complex array with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, with multiplicities m_1, m_2, \ldots, m_k respectively. Consider the linear operator L_M defined by $L_M X = MX + XM^T$, for any complex $n \times n$ array X. Find its eigenvalues and their multiplicities. (M^T denotes the transpose matrix of M).
- 5 Prove that

$$\int_0^1 \int_0^1 \frac{dx \, dy}{\frac{1}{x} + |\log y| - 1} \le 1.$$

6 For $n \ge 0$ define the matrices A_n and B_n as follows: $A_0 = B_0 = (1)$, and for every n > 0 let

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & B_{n-1} \end{pmatrix}$$
 and $B_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & 0 \end{pmatrix}$.

AoPS Community

Denote by S(M) the sum of all the elements of a matrix M. Prove that $S(A_n^{k-1}) = S(A_k^{n-1})$, for all $n, k \ge 2$.

Act of Problem Solving is an ACS WASC Accredited School.