AoPS Community

IMC 2004

www.artofproblemsolving.com/community/c4377
by Valentin Vornicu, cyshine, grobber

Day 1

1 Let S be an infinite set of real numbers such that $\left|x_{1}+x_{2}+\cdots+x_{n}\right| \leq 1$ for all finite subsets $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset S$. Show that S is countable.

2 Let $f_{1}(x)=x^{2}-1$, and for each positive integer $n \geq 2$ define $f_{n}(x)=f_{n-1}\left(f_{1}(x)\right)$. How many distinct real roots does the polynomial f_{2004} have?

3 Let A_{n} be the set of all the sums $\sum_{k=1}^{n} \arcsin x_{k}$, where $n \geq 2, x_{k} \in[0,1]$, and $\sum_{k=1}^{n} x_{k}=1$.
a) Prove that A_{n} is an interval.
b) Let a_{n} be the length of the interval A_{n}. Compute $\lim _{n \rightarrow \infty} a_{n}$.
$4 \quad$ Suppose $n \geq 4$ and let S be a finite set of points in the space $\left(\mathbb{R}^{3}\right)$, no four of which lie in a plane. Assume that the points in S can be colored with red and blue such that any sphere which intersects S in at least 4 points has the property that exactly half of the points in the intersection of S and the sphere are blue. Prove that all the points of S lie on a sphere.

5 Let S be a set of $\binom{2 n}{n}+1$ real numbers, where n is an positive integer. Prove that there exists a monotone sequence $\left\{a_{i}\right\}_{1 \leq i \leq n+2} \subset S$ such that

$$
\left|x_{i+1}-x_{1}\right| \geq 2\left|x_{i}-x_{1}\right|,
$$

for all $i=2,3, \ldots, n+1$.
6 For every complex number z different from 0 and 1 we define the following function

$$
f(z):=\sum \frac{1}{\log ^{4} z}
$$

where the sum is over all branches of the complex logarithm.
a) Prove that there are two polynomials P and Q such that $f(z)=\frac{P(z)}{Q(z)}$ for all $z \in \mathbb{C}-\{0,1\}$.
b) Prove that for all $z \in \mathbb{C}-\{0,1\}$ we have

$$
f(z)=\frac{z^{3}+4 z^{2}+z}{6(z-1)^{4}} .
$$

Day 2

$1 \quad$ Let A be a real 4×2 matrix and B be a real 2×4 matrix such that

$$
A B=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
$$

Find $B A$.
2 Let $f, g:[a, b] \rightarrow[0, \infty)$ be two continuous and non-decreasing functions such that each $x \in[a, b]$ we have

$$
\int_{a}^{x} \sqrt{f(t)} d t \leq \int_{a}^{x} \sqrt{g(t)} d t \text { and } \int_{a}^{b} \sqrt{f(t)} d t=\int_{a}^{b} \sqrt{g(t)} d t
$$

Prove that

$$
\int_{a}^{b} \sqrt{1+f(t)} d t \geq \int_{a}^{b} \sqrt{1+g(t)} d t
$$

3 Let D be the closed unit disk in the plane, and let $z_{1}, z_{2}, \ldots, z_{n}$ be fixed points in D. Prove that there exists a point z in D such that the sum of the distances from z to each of the n points is greater or equal than n.

4 For $n \geq 1$ let M be an $n \times n$ complex array with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, with multiplicities $m_{1}, m_{2}, \ldots, m_{k}$ respectively. Consider the linear operator L_{M} defined by $L_{M} X=$ $M X+X M^{T}$, for any complex $n \times n$ array X. Find its eigenvalues and their multiplicities. (M^{T} denotes the transpose matrix of M).

5 Prove that

$$
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\frac{1}{x}+|\log y|-1} \leq 1
$$

$6 \quad$ For $n \geq 0$ define the matrices A_{n} and B_{n} as follows: $A_{0}=B_{0}=(1)$, and for every $n>0$ let

$$
A_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
A_{n-1} & B_{n-1}
\end{array}\right) \text { and } B_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
A_{n-1} & 0
\end{array}\right)
$$

Denote by $S(M)$ the sum of all the elements of a matrix M. Prove that $S\left(A_{n}^{k-1}\right)=S\left(A_{k}^{n-1}\right)$, for all $n, k \geq 2$.

