Art of Problem Solving

AoPS Community

IMC 2005

www.artofproblemsolving.com/community/c4378
by Moubinool, Peter

Day 1

1 Let A be a $n \times n$ matrix such that $A_{i j}=i+j$. Find the rank of A.
Not asked in the contest: A is diagonalisable since real symetric matrix it is not difficult to find its eigenvalues.

2 2) all elements in $0,1,2 ; B[n]=$ number of rows with no 2 sequent 0 's; $A[n]$ with no 3 sequent elements the same; prove $-A[n+1]-=3 .-B[n]-$

3 3) f cont diff, $R \rightarrow] 0,+\infty\left[\right.$, prove $\left|\int_{0}^{1} f^{3}-f(0)^{2} \int_{0}^{1} f\right| \leq \max _{[0,1]}\left|f^{\prime}\right|\left(\int_{0}^{1} f\right)^{2}$
4 4) find all polynom with coeffs a permutation of $[1, \ldots, n]$ and all roots rational
$5 \quad$ 5) f twice cont diff, $\left|f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right| \leq 1$. prove $\lim _{x \rightarrow+\infty} f(x)=0$
6 6) G group, G_{m} and G_{n} commutative subgroups being the m and nth powers of the elements in G. Prove $G_{g c d(m, n)}$ is commutative.

Day 2

1 1. Let $f(x)=x^{2}+b x+c, \mathbf{M}=\mathbf{x}-\mathbf{-}(\mathbf{x})-\mathbf{i} 1$. Prove $|M| \leq 2 \sqrt{2}(-\ldots-=$ length of interval(s) $)$
2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $(f(x))^{n}$ is a polynomial for every integer $n \geq 2$. Is f also a polynomial?
$3 \quad$ What is the maximal dimension of a linear subspace V of the vector space of real $n \times n$ matrices such that for all A in B in V, we have trace $(A B)=0$?
$4 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function. Prove that there exists $w \in[-1,1]$ such that

$$
\frac{f^{\prime \prime \prime}(w)}{6}=\frac{f(1)}{2}-\frac{f(-1)}{2}-f^{\prime}(0)
$$

$5 \quad$ Find all $r>0$ such that when $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable, $\|\operatorname{grad} f(0,0)\|=1, \| \operatorname{grad} f(u)-$ $\operatorname{grad} f(v)\|\leq\| u-v \|$, then the max of f on the disk $\|u\| \leq r$, is attained at exactly one point.

6 6. If p, q are rationals, $r=p+\sqrt{7} q$, then prove there exists a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(Z)-\left(\pm I_{2}\right)$ for which $\frac{a r+b}{c r+d}=r$ and $\operatorname{det}(A)=1$

