

AoPS Community

IMC 2005

www.artofproblemsolving.com/community/c4378 by Moubinool, Peter

Let A be a $n \times n$ matrix such that $A_{ij} = i + j$. Find the rank of A.
Not asked in the contest: A is diagonalisable since real symetric matrix it is not difficult to find its eigenvalues.
2) all elements in 0,1,2; $B[n]$ = number of rows with no 2 sequent 0's; $A[n]$ with no 3 sequent elements the same; prove $-A[n+1]-=3$. $-B[n]-$
3) f cont diff, $R \to]0, +\infty[$, prove $ \int_0^1 f^3 - f(0)^2 \int_0^1 f \le \max_{[0,1]} f' (\int_0^1 f)^2$
4) find all polynom with coeffs a permutation of $[1,, n]$ and all roots rational
5) f twice cont diff, $ f''(x) + 2xf'(x) + (x^2 + 1)f(x) \le 1$. prove $\lim_{x \to +\infty} f(x) = 0$
6) G group, G_m and G_n commutative subgroups being the m and n th powers of the elements in G . Prove $G_{gcd(m,n)}$ is commutative.
1. Let $f(x) = x^2 + bx + c$, M = xf(x)-i1. Prove $ M \le 2\sqrt{2}$ (= length of interval(s))
Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $(f(x))^n$ is a polynomial for every integer $n \ge 2$. Is f also a polynomial?
What is the maximal dimension of a linear subspace V of the vector space of real $n \times n$ matrices such that for all A in B in V, we have trace $(AB) = 0$?
Let $f : \mathbb{R} \to \mathbb{R}$ be a three times differentiable function. Prove that there exists $w \in [-1, 1]$ such that $\frac{f'''(w)}{6} = \frac{f(1)}{2} - \frac{f(-1)}{2} - f'(0).$

5 Find all r > 0 such that when $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable, $\|\text{grad } f(0,0)\| = 1$, $\|\text{grad } f(u) - \text{grad } f(v)\| \le \|u - v\|$, then the max of f on the disk $\|u\| \le r$, is attained at exactly one point.

AoPS Community

2005 IMC

6 6. If p, q are rationals, $r = p + \sqrt{7}q$, then prove there exists a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(Z) - (\pm I_2)$ for which $\frac{ar+b}{cr+d} = r$ and det(A) = 1

AoPS Online 🏟 AoPS Academy 🏟 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.