

AoPS Community

IMC 2006

www.artofproblemsolving.com/community/c4379 by Frozen, Cezar Lupu, Peter

Day 1	
-------	--

1	Let $f : \mathbb{R} \to \mathbb{R}$ be a real function. Prove or disprove each of the following statements. (a) If f is continuous and range(f)= \mathbb{R} then f is monotonic (b) If f is monotonic and range(f)= \mathbb{R} then f is continuous (c) If f is monotonic and f is continuous then range(f)= \mathbb{R}
2	Find the number of positive integers x satisfying the following two conditions: 1. $x < 10^{2006}$ 2. $x^2 - x$ is divisible by 10^{2006}
3	Let <i>A</i> be an <i>n</i> x <i>n</i> matrix with integer entries and $b_1, b_2,, b_k$ be integers satisfying $detA = b_1 \cdot b_2 \cdot \cdot b_k$. Prove that there exist <i>n</i> x <i>n</i> -matrices $B_1, B_2,, B_k$ with integers entries such that $A = B_1 \cdot B_2 \cdot \cdot B_k$ and $detB_i = b_i$ for all $i = 1,, k$.
4	Let f be a rational function (i.e. the quotient of two real polynomials) and suppose that $f(n)$ is an integer for infinitely many integers n. Prove that f is a polynomial.
5	Let a, b, c, d three strictly positive real numbers such that
	$a^2 + b^2 + c^2 = d^2 + e^2,$
	$a^4 + b^4 + c^4 = d^4 + e^4.$
	Compare $a^3 + b^3 + c^3$
	with $d^3+e^3,$

6 Find all sequences a_0, a_1, \ldots, a_n of real numbers such that $a_n \neq 0$, for which the following statement is true:

If $f : \mathbb{R} \to \mathbb{R}$ is an n times differentiable function and $x_0 < x_1 < \ldots < x_n$ are real numbers such that $f(x_0) = f(x_1) = \ldots = f(x_n) = 0$ then there is $h \in (x_0, x_n)$ for which

 $a_0f(h) + a_1f'(h) + \ldots + a_nf^{(n)}(h) = 0.$

AoPS Community

Day 2	2
1	Let V be a convex polygon. (a) Show that if V has 3k vertices, then V can be triangulated such that each vertex is in an odd number of triangles. (b) Show that if the number of vertices is not divisible with 3, then V can be triangulated such that exactly 2 vertices have an even number of triangles.
2	Find all functions $f : \mathbb{R} \to R$ such that for any $a < b$, $f([a, b])$ is an interval of length $b - a$
3	Compare $\tan(\sin x)$ with $\sin(\tan x)$, for $x \in \left]0, \frac{\pi}{2}\right[$.
4	Let v_0 be the zero ector and let $v_1,, v_{n+1} \in \mathbb{R}^n$ such that the Euclidian norm $ v_i - v_j $ is rational for all $0 \le i, j \le n + 1$. Prove that $v_1,, v_{n+1}$ are linearly dependent over the rationals.
5	Show that there are an infinity of integer numbers m, n , with $gcd(m, n) = 1$ such that the equation $(x + m)^3 = nx$ has 3 different integer sollutions.
6	The scores of this problem were: one time 17/20 (by the runner-up) one time 4/20 (by Andrei Negut) one time 1/20 (by the winner) the rest had zero just to give an idea of the difficulty.
	Let A_i, B_i, S_i ($i = 1, 2, 3$) be invertible real 2×2 matrices such that -not all A_i have a common real eigenvector, $-A_i = S_i^{-1}B_iS_i$ for $i = 1, 2, 3$, $-A_1A_2A_3 = B_1B_2B_3 = I$. Prove that there is an invertible 2×2 matrix S such that $A_i = S^{-1}B_iS$ for all $i = 1, 2, 3$.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.