Art of Problem Solving

AoPS Community

IMC 2007

www.artofproblemsolving.com/community/c4380
by Valentin Vornicu, Xevarion

Day 1 August 5th

1 Let f be a polynomial of degree 2 with integer coefficients. Suppose that $f(k)$ is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5 .

2 Let $n \geq 2$ be an integer. What is the minimal and maximal possible rank of an $n \times n$ matrix whose n^{2} entries are precisely the numbers $1,2, \ldots, n^{2}$?

3 Call a polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ good if there exist 2×2 real matrices A_{1}, \ldots, A_{k} such that $P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{det}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)$.

Find all values of k for which all homogeneous polynomials with k variables of degree 2 are good. (A polynomial is homogeneous if each term has the same total degree.)

4 Let G be a finite group. For arbitrary sets $U, V, W \subset G$, denote by $N_{U V W}$ the number of triples $(x, y, z) \in U \times V \times W$ for which $x y z$ is the unity .
Suppose that G is partitioned into three sets A, B and C (i.e. sets A, B, C are pairwise disjoint and $G=A \cup B \cup C)$. Prove that $N_{A B C}=N_{C B A}$.

5 Let n be a positive integer and a_{1}, \ldots, a_{n} be arbitrary integers. Suppose that a function $f: \mathbb{Z} \rightarrow$ \mathbb{R} satisfies $\sum_{i=1}^{n} f\left(k+a_{i} l\right)=0$ whenever k and l are integers and $l \neq 0$. Prove that $f=0$.

6 How many nonzero coefficients can a polynomial $P(x)$ have if its coefficients are integers and $|P(z)| \leq 2$ for any complex number z of unit length?

Day 2 August 6th

1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Suppose that for any $c>0$, the graph of f can be moved to the graph of $c f$ using only a translation or a rotation. Does this imply that $f(x)=$ $a x+b$ for some real numbers a and b ?

2 Let x, y and z be integers such that $S=x^{4}+y^{4}+z^{4}$ is divisible by 29. Show that S is divisible by 29^{4}.
$3 \quad$ Let C be a nonempty closed bounded subset of the real line and $f: C \rightarrow C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that $f(p)=p$.
(A set is closed if its complement is a union of open intervals. A function g is nondecreasing if $g(x) \leq g(y)$ for all $x \leq y$.)
$4 \quad$ Let $n>1$ be an odd positive integer and $A=\left(a_{i j}\right)_{i, j=1 \ldots n}$ be the $n \times n$ matrix with

$$
a_{i j}= \begin{cases}2 & \text { if } i=j \\ 1 & \text { if } i-j \equiv \pm 2 \quad(\bmod n) . \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{det} A$.
5 For each positive integer k, find the smallest number n_{k} for which there exist real $n_{k} \times n_{k}$ matrices $A_{1}, A_{2}, \ldots, A_{k}$ such that all of the following conditions hold:
(1) $A_{1}^{2}=A_{2}^{2}=\ldots=A_{k}^{2}=0$,
(2) $A_{i} A_{j}=A_{j} A_{i}$ for all $1 \leq i, j \leq k$, and
(3) $A_{1} A_{2} \ldots A_{k} \neq 0$.

6 Let $f \neq 0$ be a polynomial with real coefficients. Define the sequence $f_{0}, f_{1}, f_{2}, \ldots$ of polynomials by $f_{0}=f$ and $f_{n+1}=f_{n}+f_{n}^{\prime}$ for every $n \geq 0$. Prove that there exists a number N such that for every $n \geq N$, all roots of f_{n} are real.

