

AoPS Community

IMC 2007

www.artofproblemsolving.com/community/c4380 by Valentin Vornicu, Xevarion

Day 1 August 5th

1	Let f be a polynomial of degree 2 with integer coefficients. Suppose that $f(k)$ is divisible by 5 for every integer k . Prove that all coefficients of f are divisible by 5.
2	Let $n \ge 2$ be an integer. What is the minimal and maximal possible rank of an $n \times n$ matrix whose n^2 entries are precisely the numbers $1, 2,, n^2$?
3	Call a polynomial $P(x_1,, x_k)$ good if there exist 2×2 real matrices $A_1,, A_k$ such that $P(x_1,, x_k) = \det\left(\sum_{i=1}^k x_i A_i\right)$.
	Find all values of k for which all homogeneous polynomials with k variables of degree 2 are good. (A polynomial is homogeneous if each term has the same total degree.)
4	Let G be a finite group. For arbitrary sets $U, V, W \subset G$, denote by N_{UVW} the number of triples $(x, y, z) \in U \times V \times W$ for which xyz is the unity. Suppose that G is partitioned into three sets A, B and C (i.e. sets A, B, C are pairwise disjoint and $G = A \cup B \cup C$). Prove that $N_{ABC} = N_{CBA}$.
5	Let <i>n</i> be a positive integer and a_1, \ldots, a_n be arbitrary integers. Suppose that a function $f : \mathbb{Z} \to \mathbb{R}$ satisfies $\sum_{i=1}^n f(k+a_i l) = 0$ whenever <i>k</i> and <i>l</i> are integers and $l \neq 0$. Prove that $f = 0$.
6	How many nonzero coefficients can a polynomial $P(x)$ have if its coefficients are integers and $ P(z) \le 2$ for any complex number z of unit length?
Day 2	August 6th
1	Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that for any $c > 0$, the graph of f can be moved to the graph of cf using only a translation or a rotation. Does this imply that $f(x) = ax + b$ for some real numbers a and b ?
2	Let x, y and z be integers such that $S = x^4 + y^4 + z^4$ is divisible by 29. Show that S is divisible by 29^4 .
3	Let <i>C</i> be a nonempty closed bounded subset of the real line and $f : C \to C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that $f(p) = p$.

AoPS Community

2007 IMC

(A set is closed if its complement is a union of open intervals. A function g is nondecreasing if $g(x) \le g(y)$ for all $x \le y$.)

4 Let n > 1 be an odd positive integer and $A = (a_{ij})_{i,j=1..n}$ be the $n \times n$ matrix with

$$a_{ij} = \begin{cases} 2 & \text{if } i = j \\ 1 & \text{if } i - j \equiv \pm 2 \pmod{n} \\ 0 & \text{otherwise} \end{cases}$$

Find $\det A$.

5 For each positive integer k, find the smallest number n_k for which there exist real $n_k \times n_k$ matrices A_1, A_2, \ldots, A_k such that all of the following conditions hold:

(1) $A_1^2 = A_2^2 = \ldots = A_k^2 = 0$,

- (2) $A_i A_j = A_j A_i$ for all $1 \le i, j \le k$, and
- (3) $A_1 A_2 \dots A_k \neq 0$.
- **6** Let $f \neq 0$ be a polynomial with real coefficients. Define the sequence f_0, f_1, f_2, \ldots of polynomials by $f_0 = f$ and $f_{n+1} = f_n + f'_n$ for every $n \ge 0$. Prove that there exists a number N such that for every $n \ge N$, all roots of f_n are real.

Art of Problem Solving is an ACS WASC Accredited School.