AoPS Community

IMC 2009

www.artofproblemsolving.com/community/c4381
by joybangla

Day 1

1 Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(r) \leq g(r) \quad \forall r \in \mathbb{Q}
$$

Does this imply $f(x) \leq g(x) \quad \forall x \in \mathbb{R}$ if
(a) f and g are non-decreasing ?
(b) f and g are continuous?

2 Let A, B, C be real square matrices of the same order, and suppose A is invertible. Prove that

$$
(A-B) C=B A^{-1} \Longrightarrow C(A-B)=A^{-1} B
$$

3 In a town every two residents who are not friends have a friend in common, and no one is a friend of everyone else. Let us number the residents from 1 to n and let a_{i} be the number of friends of the $i^{\text {th }}$ resident. Suppose that

$$
\sum_{i=1}^{n} a_{i}^{2}=n^{2}-n
$$

Let k be the smallest number of residents (at least three) who can be seated at a round table in such a way that any two neighbors are friends. Determine all possible values of k.

4 Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a complex polynomial. Suppose that $1=c_{0} \geq$ $c_{1} \geq \cdots \geq c_{n} \geq 0$ is a sequence of real numbers which form a convex sequence. (That is $2 c_{k} \leq c_{k-1}+c_{k+1}$ for every $k=1,2, \cdots, n-1$) and consider the polynomial

$$
q(z)=c_{0} a_{0}+c_{1} a_{1} z+c_{2} a_{2} z^{2}+\cdots+c_{n} a_{n} z^{n}
$$

Prove that :

$$
\max _{|z| \leq 1} q(z) \leq \max _{|z| \leq 1} p(z)
$$

$5 \quad$ Let n be a positive integer. An n-simplex in \mathbb{R}^{n} is given by $n+1$ points $P_{0}, P_{1}, \cdots, P_{n}$, called its vertices, which do not all belong to the same hyperplane. For every n-simplex \mathcal{S} we denote by $v(\mathcal{S})$ the volume of \mathcal{S}, and we write $C(\mathcal{S})$ for the center of the unique sphere containing all the vertices of \mathcal{S}.
Suppose that P is a point inside an n-simplex \mathcal{S}. Let \mathcal{S}_{i} be the n-simplex obtained from \mathcal{S} by replacing its $i^{\text {th }}$ vertex by P. Prove that :

$$
\sum_{j=0}^{n} v\left(\mathcal{S}_{j}\right) C\left(\mathcal{S}_{j}\right)=v(\mathcal{S}) C(\mathcal{S})
$$

Day 2

$1 \quad$ Let ℓ be a line and P be a point in \mathbb{R}^{3}. Let S be the set of points X such that the distance from X to ℓ is greater than or equal to two times the distance from X to P. If the distance from P to ℓ is $d>0$, find $\operatorname{Volume}(S)$.

2 Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$ and for all $x \in[0, \infty)$, it satisfies

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0
$$

Prove that, for all $x \in[0, \infty)$,

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}
$$

3 Let $A, B \in \mathcal{M}_{n}(\mathbb{C})$ be two $n \times n$ matrices such that

$$
A^{2} B+B A^{2}=2 A B A
$$

Prove there exists $k \in \mathbb{N}$ such that

$$
(A B-B A)^{k}=\mathbf{0}_{n}
$$

Here $\mathbf{0}_{n}$ is the null matrix of order n.
4 Let p be a prime number and $\mathbf{W} \subseteq \mathbb{F}_{p}[x]$ be the smallest set satisfying the following :
(a) $x+1 \in \mathbf{W}$ and $x^{p-2}+x^{p-3}+\cdots+x^{2}+2 x+1 \in \mathbf{W}$
(b) For γ_{1}, γ_{2} in \mathbf{W}, we also have $\gamma(x) \in \mathbf{W}$, where $\gamma(x)$ is the remainder $\left(\gamma_{1} \circ \gamma_{2}\right)(x)\left(\bmod x^{p}-x\right)$. How many polynomials are in \mathbf{W} ?
$5 \quad$ Let \mathbb{M} be the vector space of $m \times p$ real matrices. For a vector subspace $S \subseteq \mathbb{M}$, denote by $\delta(S)$ the dimension of the vector space generated by all columns of all matrices in S.
Say that a vector subspace $T \subseteq \mathbb{M}$ is a covering matrix space if

$$
\bigcup_{A \in T, A \neq \mathbf{0}} \operatorname{ker} A=\mathbb{R}^{p}
$$

Such a T is minimal if it doesn't contain a proper vector subspace $S \subset T$ such that S is also a covering matrix space.
(a) (8 points) Let T be a minimal covering matrix space and let $n=\operatorname{dim}(T)$

Prove that

$$
\delta(T) \leq\binom{ n}{2}
$$

(b) (2 points) Prove that for every integer n we can find m and p, and a minimal covering matrix space T as above such that $\operatorname{dim} T=n$ and $\delta(T)=\binom{n}{2}$

