Art of Problem Solving

AoPS Community

IMC 2010

www.artofproblemsolving.com/community/c4382
by uglysolutions, rustam

Day 1 July 26th
1 Let $0<a<b$. Prove that $\int_{a}^{b}\left(x^{2}+1\right) e^{-x^{2}} d x \geq e^{-a^{2}}-e^{-b^{2}}$.
2 Compute the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(4 k+1)(4 k+2)(4 k+3)(4 k+4)}=\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{5 \cdot 6 \cdot 7 \cdot 8}+\ldots$
3 Define the sequence x_{1}, x_{2}, \ldots inductively by $x_{1}=\sqrt{5}$ and $x_{n+1}=x_{n}^{2}-2$ for each $n \geq 1$. Compute $\lim _{n \rightarrow \infty} \frac{x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots x_{n}}{x_{n+1}}$.
$4 \quad$ Let a, b be two integers and suppose that n is a positive integer for which the set $\mathbb{Z} \backslash\left\{a x^{n}+b y^{n} \mid\right.$ $x, y \in \mathbb{Z}\}$ is finite. Prove that $n=1$.

5 Suppose that a, b, c are real numbers in the interval [$-1,1]$ such that $1+2 a b c \geq a^{2}+b^{2}+c^{2}$. Prove that $1+2(a b c)^{n} \geq a^{2 n}+b^{2 n}+c^{2 n}$ for all positive integers n.

Day 2 July 27th

1 (a) A sequence x_{1}, x_{2}, \ldots of real numbers satisfies

$$
x_{n+1}=x_{n} \cos x_{n} \text { for all } n \geq 1 .
$$

Does it follows that this sequence converges for all initial values x_{1} ? (5 points)
(b) A sequence y_{1}, y_{2}, \ldots of real numbers satisfies

$$
y_{n+1}=y_{n} \sin y_{n} \text { for all } n \geq 1 .
$$

Does it follows that this sequence converges for all initial values y_{1} ? (5 points)
2 Let $a_{0}, a_{1}, \ldots, a_{n}$ be positive real numbers such that $a_{k+1}-a_{k} \geq 1$ for all $k=0,1, \ldots, n-1$. Prove that

$$
1+\frac{1}{a_{0}}\left(1+\frac{1}{a_{1}-a_{0}}\right) \cdots\left(1+\frac{1}{a_{n}-a_{0}}\right) \leq\left(1+\frac{1}{a_{0}}\right)\left(1+\frac{1}{a_{1}}\right) \cdots\left(1+\frac{1}{a_{n}}\right)
$$

3 Denote by S_{n} the group of permutations of the sequence $(1,2, \ldots, n)$. Suppose that G is a subgroup of S_{n}, such that for every $\pi \in G \backslash\{e\}$ there exists a unique $k \in\{1,2, \ldots, n\}$ for which $\pi(k)=k$. (Here e is the unit element of the group S_{n}.) Show that this k is the same for all $\pi \in G \backslash\{e\}$.

4 Let A be a symmetric $m \times m$ matrix over the two-element field all of whose diagonal entries are zero. Prove that for every positive integer n each column of the matrix A^{n} has a zero entry.

5 Suppose that for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and real numbers $a<b$ one has $f(x)=0$ for all $x \in(a, b)$. Prove that $f(x)=0$ for all $x \in \mathbb{R}$ if

$$
\sum_{k=0}^{p-1} f\left(y+\frac{k}{p}\right)=0
$$

for every prime number p and every real number y.

